This doctoral thesis explores the effective solid-state synthesis of novel functional perovskites under extreme High Pressure/High Temperature (HP/HT) conditions. Specifically, it presents a comprehensive investigation of BiCu0.5Mn0.5O3 (BCMO) and KPbFeMoO6 (KPFMO), illustrating how it is possible to manipulate the chemistry of the perovskite structures to finely tune their physical properties. BCMO is characterized by a disordered mesoscale distribution of the B cations and the correlation between magnetic and electrical properties has been pointed out. In particular, BCMO displays a weak FM-like transition at 320 K and a thermally activated electrical transport, while, in the low-temperature regime, the electrons’ localization on Mn site leads to a 3D Variable Range Hopping transport and an AFM spin-glassy state at 50 K. For KPFMO a reliable cubic structure has been proposed, while further investigations are required for cationic ordering evaluation. Contrarily to BCMO, it has a more resistive character, behaving as a dielectric below 250 K and showing an AFM transition at around 50 K. Thus, this study provides an in-depth analysis of the properties of these compounds, emphasizing structural characterizations through the combination of complementary techniques such as X-rays, electrons, and neutrons diffraction and highlighting the crucial role of the crystal structure resolution process. Additionally, the magnetic and electrical properties of these perovskites are explored and compared with those of similar compounds, highlighting the pros and cons of their behaviour as multifunctional materials.
Questa tesi di dottorato esplora l’effettiva sintesi allo stato solido di nuove perovskiti funzionali in condizioni estreme di alta pressione e alta temperatura (HP/HT). In particolare, essa presenta un’indagine completa su BiCu0.5Mn0.5O3 (BCMO) e KPbFeMoO6 (KPFMO), illustrando come sia possibile manipolare la chimica delle strutture a perovskite per regolare finemente le loro proprietà fisiche. BCMO è caratterizzato da una distribuzione disordinata a mesoscala dei cationi B e sono stati osservati effetti di correlazione tra le proprietà magnetiche ed elettriche. In particolare, BCMO mostra una debole transizione di tipo ferromagnetico a 320 K e un trasporto elettrico termicamente attivato, mentre, nel regime di basse temperature, la localizzazione degli elettroni sul sito del Mn porta a un trasporto di hopping 3D-variabile e uno stato spin-glass antiferromagnetico a 50 K. Per KPFMO è stata proposta una struttura cubica, mentre ulteriori indagini sono necessarie per la valutazione dell’ordinamento cationico. Contrariamente a BCMO, ha un carattere più resistivo, comportandosi come un dielettrico al di sotto dei 250 K e mostrando una transizione antiferromagnetica a circa 50 K. Questo studio fornisce quindi un’analisi approfondita delle proprietà di questi composti, enfatizzando le caratterizzazioni strutturali attraverso l’integrazione di tecniche complementari come diffrazione da raggi X, elettroni e neutroni, e sottolineando il ruolo cruciale del processo di risoluzione della struttura cristallografica. Inoltre, le proprietà magnetiche ed elettriche di queste perovskiti sono esplorate e confrontate con quelle di composti simili, evidenziando vantaggi e svantaggi del loro comportamento come materiali multifunzionali.
High Pressure/High Temperature synthesis of novel functional perovskites and their structural, magnetic, and electrical characterizations
Chiara, Coppi
2024
Abstract
This doctoral thesis explores the effective solid-state synthesis of novel functional perovskites under extreme High Pressure/High Temperature (HP/HT) conditions. Specifically, it presents a comprehensive investigation of BiCu0.5Mn0.5O3 (BCMO) and KPbFeMoO6 (KPFMO), illustrating how it is possible to manipulate the chemistry of the perovskite structures to finely tune their physical properties. BCMO is characterized by a disordered mesoscale distribution of the B cations and the correlation between magnetic and electrical properties has been pointed out. In particular, BCMO displays a weak FM-like transition at 320 K and a thermally activated electrical transport, while, in the low-temperature regime, the electrons’ localization on Mn site leads to a 3D Variable Range Hopping transport and an AFM spin-glassy state at 50 K. For KPFMO a reliable cubic structure has been proposed, while further investigations are required for cationic ordering evaluation. Contrarily to BCMO, it has a more resistive character, behaving as a dielectric below 250 K and showing an AFM transition at around 50 K. Thus, this study provides an in-depth analysis of the properties of these compounds, emphasizing structural characterizations through the combination of complementary techniques such as X-rays, electrons, and neutrons diffraction and highlighting the crucial role of the crystal structure resolution process. Additionally, the magnetic and electrical properties of these perovskites are explored and compared with those of similar compounds, highlighting the pros and cons of their behaviour as multifunctional materials.File | Dimensione | Formato | |
---|---|---|---|
PhDThesis_COPPI_rev.pdf
embargo fino al 01/06/2026
Dimensione
9.91 MB
Formato
Adobe PDF
|
9.91 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/192958
URN:NBN:IT:UNIPR-192958