Transition metal oxides (TMO) are widely used in the fields of energy, environment, and biomedicine due to their magnetic, electronic, and optical properties. Surface functionalization of TMO nanomaterials with organic species exploits the high surface-to-volume ratio of nanostructured materials to obtain novel properties, such as increased light absorption or enhanced biocompatibility, for the advancement of hybrid materials use in solar cells, sensors, imaging, as drug carriers, and in other photocatalytic and biomedical applications. This PhD thesis investigates two TMOs, titanium dioxide (TiO2) and magnetite (Fe3O4), and their functionalization with (bio)organic molecules, for their use in technological applications. State-of-the-art computational methods and massively parallelized codes were employed. Most calculations were performed using density functional theory (DFT) with hybrid exchange-correlation functionals and localized atomic basis sets. Time-dependent DFT (TDDFT) was used to study optical properties of nanosystems. The computationally cheap self-consistent charge density-functional tight-binding (SCC-DFTB) method was applied to investigate the dynamic behavior at the water/Fe3O4 interface. The first part of this PhD work presents the study, by means of DFT and TDDFT calculations, of structural, electronic, and optical properties of 2.2 nm diameter TiO2 spherical nanoparticles that are functionalized with a fluorescent near-infrared cyanine dye (CY) for photodynamic therapy and in-vivo bioimaging. The different adsorption configurations of CY on TiO2 were found to impact on the electron charge transfer mechanism and on the relevant features of the optical spectra. The second part of this PhD work is devoted to two in-depth investigations of TiO2 as a photocatalyst for (i) the photoinduced energy/electron transfer (PET) reversible addition–fragmentation chain-transfer (RAFT) polymerization, a highly versatile technique for controlled polymerization, and (ii) the photocatalytic oxidation (PCO) of volatile organic compounds (VOCs) for air purification. The research on PET-RAFT was conducted in collaboration with the experimental group of Prof. R. Simonutti at the University of Milano-Bicocca. DFT calculations revealed a photoinduced energy transfer PET mechanism occurring between the anatase (101) TiO2 surface and two distinct potential chain transfer agents (CTAs). The different experimental reaction rates proved to be related to the diverse CTAs interaction with the TiO2 surface. The investigation of PCO of formic acid, a common VOC pollutant, on dry and hydrated anatase (101) TiO2 surfaces, provided insights into the key role played by the photogenerated species at the TiO2 surface, and the impact of co-adsorbed water molecules in increasing the reaction rate. Spin-constrained DFT simulations were used to study the reaction in the photoexcited state upon light irradiation. This research was conducted in collaboration with Prof. A. Selloni at Princeton University. The last part of this PhD work focuses on the adsorption of two amino acids (AA) (glycine and glutamic acid) on dry and hydrated Fe3O4 (001) surface for their potential use as effective coating agents for biomedical applications. Water molecules are found to play a key role in stabilizing the adsorption of zwitterionic species, suggesting that both deprotonated and zwitterionic adsorption modes could compete and coexist on the surface under hydrated conditions. This work provides new theoretical insights into AA-Fe3O4 surface interactions. In conclusion, with the present work we made a step forward in understanding how the functionalization with (bio)organic molecule impacts the structural, electronic, optical and (photo)chemical properties of bare and hydrated TiO2 and Fe3O4 nanomaterials. These findings provide useful insights for the rational design of nanosystems with optimal properties for photocatalytic and biomedical applications.
Gli ossidi di metalli di transizione (TMO) sono molto utilizzati nei settori dell'energia, dell'ambiente e della medicina per le loro proprietà magnetiche, elettroniche e ottiche. La funzionalizzazione superficiale di nanomateriali di TMO con specie organiche sfrutta l'elevato rapporto superficie/volume dei materiali nanostrutturati per ottenere nuove proprietà, come maggiore assorbimento della luce o maggiore biocompatibilità, fondamentali per lo sviluppo di materiali ibridi per applicazioni fotocatalitiche e biomediche. Questa tesi di dottorato tratta la funzionalizzazione di due TMO, il biossido di titanio TiO2 e la magnetite Fe3O4, con molecole (bio)organiche, per applicazioni tecnologiche, mediante metodi di calcolo avanzati e codici massivamente parallelizzati. La maggior parte dei calcoli effettuati si basa sulla teoria del funzionale della densità (DFT) con funzionali ibridi di scambio-correlazione e set di base atomici localizzati. La DFT dipendente dal tempo (TDDFT) è usata per studiare le proprietà ottiche dei nanosistemi. Il metodo self-consistent charge density-functional tight-binding (SCC-DFTB), a basso costo computazionale, è applicato per studiare il comportamento dinamico all'interfaccia H2O/Fe3O4. La prima parte di questo lavoro di dottorato riguarda lo studio, mediante calcoli DFT e TDDFT, delle proprietà strutturali, elettroniche e ottiche di nanoparticelle sferiche di TiO2 di diametro 2.2 nm funzionalizzate con un colorante fluorescente nel vicino infrarosso (cianina, CY), per la terapia fotodinamica e la diagnostica in vivo. Si è determinato che le diverse configurazioni di adsorbimento di CY su TiO2 influiscono sul meccanismo di trasferimento elettronico e sulle caratteristiche degli spettri di assorbimento. La seconda parte è dedicata a due indagini sull’uso di TiO2 come fotocatalizzatore per la polimerizzazione photoinduced energy/electron transfer (PET) reversible addition–fragmentation chain-transfer (RAFT), una tecnica altamente versatile di polimerizzazione controllata, e l'ossidazione fotocatalitica (PCO) di composti organici volatili (VOC) per la purificazione dell'aria. Lo studio sulla PET-RAFT è stato condotto in collaborazione con il gruppo sperimentale del Prof. R. Simonutti (Università degli Studi di Milano-Bicocca). I calcoli DFT hanno rivelato un meccanismo PET di trasferimento energetico che avviene tra la superficie di TiO2 anatasio (101) e due potenziali agenti di trasferimento di catena CTA distinti. Le diverse velocità di reazione sperimentali sono risultate essere correlate alle varie interazioni dei CTA con la superficie di TiO2. L'indagine sulla PCO dell'acido formico, un comune VOC inquinante, su superfici di TiO2 anatasio (101) in vuoto e idratato, ha dimostrato come le specie fotogenerate sulla superficie del TiO2 rendono esoenergetica l’ossidazione fotocatalitica a CO2, e come le molecole d'acqua co-adsorbite ne aumentano la velocità di reazione. Simulazioni DFT spin-constrained sono state utilizzate per studiare la reazione nello stato fotoeccitato dopo l'irradiazione della luce. Questo studio è stato condotto in collaborazione con la Prof. A. Selloni (Princeton University). L'ultima parte riguarda l'adsorbimento di due aminoacidi (glicina e acido glutammico) sulla superficie di Fe3O4 (001) in vuoto e idratata, quali possibili rivestimenti in applicazioni biomediche. Le molecole d'acqua svolgono un ruolo chiave nello stabilizzare l'adsorbimento di specie zwitterioniche, suggerendo che le modalità di adsorbimento deprotonata e zwitterionica potrebbero competere e coesistere sulla superficie idratata. In conclusione, questo lavoro di dottorato ha contribuito alla comprensione di come la funzionalizzazione con molecole (bio)organiche influenzi le proprietà strutturali, elettroniche, ottiche e (foto)chimiche di nanomateriali di TiO2 e Fe3O4, fornendo utili indicazioni per la progettazione di nanosistemi per applicazioni fotocatalitiche e biomediche.
Ab initio modeling of transition metal oxide surfaces functionalized with (bio)organic molecules for photocatalysis and nanomedicine
DALDOSSI, CHIARA
2025
Abstract
Transition metal oxides (TMO) are widely used in the fields of energy, environment, and biomedicine due to their magnetic, electronic, and optical properties. Surface functionalization of TMO nanomaterials with organic species exploits the high surface-to-volume ratio of nanostructured materials to obtain novel properties, such as increased light absorption or enhanced biocompatibility, for the advancement of hybrid materials use in solar cells, sensors, imaging, as drug carriers, and in other photocatalytic and biomedical applications. This PhD thesis investigates two TMOs, titanium dioxide (TiO2) and magnetite (Fe3O4), and their functionalization with (bio)organic molecules, for their use in technological applications. State-of-the-art computational methods and massively parallelized codes were employed. Most calculations were performed using density functional theory (DFT) with hybrid exchange-correlation functionals and localized atomic basis sets. Time-dependent DFT (TDDFT) was used to study optical properties of nanosystems. The computationally cheap self-consistent charge density-functional tight-binding (SCC-DFTB) method was applied to investigate the dynamic behavior at the water/Fe3O4 interface. The first part of this PhD work presents the study, by means of DFT and TDDFT calculations, of structural, electronic, and optical properties of 2.2 nm diameter TiO2 spherical nanoparticles that are functionalized with a fluorescent near-infrared cyanine dye (CY) for photodynamic therapy and in-vivo bioimaging. The different adsorption configurations of CY on TiO2 were found to impact on the electron charge transfer mechanism and on the relevant features of the optical spectra. The second part of this PhD work is devoted to two in-depth investigations of TiO2 as a photocatalyst for (i) the photoinduced energy/electron transfer (PET) reversible addition–fragmentation chain-transfer (RAFT) polymerization, a highly versatile technique for controlled polymerization, and (ii) the photocatalytic oxidation (PCO) of volatile organic compounds (VOCs) for air purification. The research on PET-RAFT was conducted in collaboration with the experimental group of Prof. R. Simonutti at the University of Milano-Bicocca. DFT calculations revealed a photoinduced energy transfer PET mechanism occurring between the anatase (101) TiO2 surface and two distinct potential chain transfer agents (CTAs). The different experimental reaction rates proved to be related to the diverse CTAs interaction with the TiO2 surface. The investigation of PCO of formic acid, a common VOC pollutant, on dry and hydrated anatase (101) TiO2 surfaces, provided insights into the key role played by the photogenerated species at the TiO2 surface, and the impact of co-adsorbed water molecules in increasing the reaction rate. Spin-constrained DFT simulations were used to study the reaction in the photoexcited state upon light irradiation. This research was conducted in collaboration with Prof. A. Selloni at Princeton University. The last part of this PhD work focuses on the adsorption of two amino acids (AA) (glycine and glutamic acid) on dry and hydrated Fe3O4 (001) surface for their potential use as effective coating agents for biomedical applications. Water molecules are found to play a key role in stabilizing the adsorption of zwitterionic species, suggesting that both deprotonated and zwitterionic adsorption modes could compete and coexist on the surface under hydrated conditions. This work provides new theoretical insights into AA-Fe3O4 surface interactions. In conclusion, with the present work we made a step forward in understanding how the functionalization with (bio)organic molecule impacts the structural, electronic, optical and (photo)chemical properties of bare and hydrated TiO2 and Fe3O4 nanomaterials. These findings provide useful insights for the rational design of nanosystems with optimal properties for photocatalytic and biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_812000.pdf
embargo fino al 13/02/2026
Dimensione
62.1 MB
Formato
Adobe PDF
|
62.1 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193448
URN:NBN:IT:UNIMIB-193448