AlSi7Mg, AlSi10Mg and Ti6Al4V lightweight alloys are widely used within automotive, aerospace, and biomedical fields where high mechanical performance and safety factors are required. In fact, the age-hardening aluminium alloys are characterized by high specific tensile strengths and good corrosion resistance, as well as the titanium alloy that show higher tensile strengths, corrosion resistance and cell biocompatibility. Adding the advantages conferred by the Laser-Powder Bed Fusion manufacturing technology, the application of these alloys can significantly increase. The present doctoral thesis analyses the effects induced by different heat treatments to evaluate their optimization on AlSi7Mg, AlSi10Mg and Ti6Al4V samples manufactured via Laser-Powder Bed Fusion. Both the AlSi7Mg and AlSi10Mg were firstly studied in the as-built conditions; in which the effects induced by the build platform pre-heated at 150 °C were carefully investigated along the total height (300 mm) of the samples. At the same time, the microstructural effects and the resultant mechanical properties obtained by the layer thickness (+ 40 ?m) and hatch spacing (– 150 ?m) variations were also investigated on the AlSi10Mg samples. Secondly, the effects induced by direct aging at 175 °C, 200 °C and 225 °C were also examined in order to homogenize the mechanical properties and HV microhardness from the bottom to the top regions of the manufactured samples. After just the 1–2 h treatment at 175 °C and 200 °C for the AlSi7Mg and AlSi10Mg alloys, respectively, the mechanical properties were already homogenized and optimized. The homogenization in mechanical properties was also evaluated after the solution heat treatment at 505 °C and artificial aging at 175 °C for both aluminium alloys. Even considering the samples in peak-aging conditions, the yield and ultimate tensile strength were always lower than those obtained by samples heat-treated in optimized direct aging conditions. These worsening effects were also reflected on the ductility, whose values were lowered of 11 %. Ti6Al4V samples manufactured via Laser-Powder Bed Fusion in different build orientations were analysed in as-built and heat-treated conditions. In order to reduce the anisotropy of the mechanical properties, the effects of two different annealing heat treatments at 704 °C and 740 °C were carefully investigated through SEM, XRD and EBSD measurements. Despite the different cooling pathways between both annealing heat treatments, and the consequent coarsening effects of the ?-phase laths (+ 23 %), no variation in terms of yield and ultimate tensile strengths were obtained. EBSD and SEM investigations did not show a preferential orientation of the ?-phase, but highlighted that the same ?-laths maintained the same ?’-martensite orientations during the ? ? ? + ?. The effective decrease of the tensile strengths was obtained after the solubilization heat treatment at 1050 °C × 60 min, due to the recrystallized microstructure. In fact, the ultimate tensile strength and the yield strength decreased to 925 and 825 MPa, respectively. At the same time, elongation values did not significantly due to the formation of an ?-case layer on account of the oxygen diffusion, on the sample surface, during the solubilization heat treatment. Moreover, the different thickness of the samples promoted several cooling pathways and, consequently, the formation of different microstructures at room temperature, despite the same fast cooling in argon gas (60 min). Lastly, the sand-blasting process decreased the surface roughness (– 50 %) but increases the plastic strain thanks to the impact of glass spheres on the sample surface. No variations in terms of tensile strengths were detected. In relation to the AlSi10Mg alloys in as-built and heat-treated conditions, the correlation between the HV microhardness and tensile strengths can be good approximated by Cahoon’s equations. From the comparison of the theoretical and experimental Vickers microhardness values, and those calculated by the yield strength, a correction factor of 0.891 was obtained to adjust Cahoon’s equation. On the other hand, Ti6Al4V samples heat-treated at 704 °C and 740 °C show a discrepancy between the real and calculated HV values of 21–22 %. Therefore, the ?-phase increase of about 21–22 % the HV values compared to those calculated with the Cahoon equation.
Le leghe leggere AlSi7Mg, AlSi10Mg e Ti6Al4V sono leghe ampiamente utilizzate in differenti settori industriali, quali automotive, aerospace e biomedico dove sono richieste elevate proprietà meccaniche e, conseguentemente, elevati coefficienti di sicurezza. Infatti, le leghe di alluminio rafforzabili tramite processi di invecchiamento sono caratterizzate da elevate proprietà meccaniche specifiche. Parallelamente, le leghe di titanio mostrano proprietà tensili più elevate rispetto a quelle dell’alluminio così come la resistenza a corrosione e la biocompatibilità cellulare. Se si aggiungono tutti i vantaggi conferiti dal processo Laser-Powder Bed Fusion, le applicazioni di queste leghe possono aumentare significativamente. In tal contest, la presente tesi di dottorato analizza gli effetti indotti da differenti trattamenti termici per poterne valutare una loro ottimizzazione. In primo luogo, sia la lega AlSi7Mg che la lega AlSi10Mg sono state analizzate in condizioni as-built, dove sono stati analizzati, lungo l’intera altezza degli stessi campioni (300 mm), gli effetti indotti dalla piattaforma pre-riscaldata alla temperature di 150 °C. Nello stesso tempo, sono stati esaminati gli effetti indotti da un incrementato di + 40 ?m del layer thickness e un decremento di – 150 ?m dell’hatch spacing sulla microstruttura di campioni in AlSi10Mg. In secondo luogo, gli effetti indotti da trattamenti termici di invecchiamento diretto alle temperature di 175 °C, 200 °C e 225 °C sono stati analizzati anche nell’ottica di omogeneizzare le proprietà meccaniche e le durezze tra le regioni top e bottom dei campioni stampati. Già dopo 1–2 h di trattamento termico di invecchiamento diretto a 175 °C, per la lega AlSi7Mg, e 200 °C, per la lega AlSi10Mg, le proprietà meccaniche sono state omogeneizzate e, contemporaneamente, ottimizzate. Queste condizioni sono state anche valutate dopo solubilizzazione a 505 °C ed invecchiamento artificiale a 175 °C per entrambe le leghe. Anche considerando i campioni in condizioni di peak-aging, lo snervamento e la resistenza ultima a trazione sono sempre rimaste inferiori a quelle ottenute da campioni trattati termicamente con ottimizzate condizioni di invecchiamento diretto. Questi effetti negativi sono anche riflessi sui valori di duttilità che sono risulti essere inferiori a l’11 %. Le analisi di microscopia ottica ed elettronica, con correlate misure XRD, sono state eseguite sui campioni as-built e trattati termicamente per valutarne variazioni in termini microstrutturali. Contestualmente, sono state studiati sia la variazione di densità, sia fenomeni di precipitazione promossi, in primo luogo, dalla piattaforma pre-riscaldata e, in secondo luogo, dai trattamenti termici eseguiti sui campioni as-built. Differenti campioni in Ti6Al4V stampati tramite la tecnologia Laser-Powder Bed Fusion in differenti orientazioni sono stati analogamente analizzati sia in condizioni as-built sia dopo trattamenti termici. Nell’ottica di omogeneizzare l’anisotropia delle proprietà meccaniche, due differenti trattamenti termici di ricottura, rispettivamente alle temperature di 704 °C e 740 °C sono stati investigati per mezzo di analisi di microscopia elettronica, EBSD e XRD. Nonostante I differenti raffreddamenti tra i due trattamenti termici di ricottura, e il conseguente effetto di coarsening delle fasi ? (+ 23 %), non è stata rilevata nessuna variazione in termini di proprietà meccaniche. Analisi SEM ed EBSD non hanno evidenziato orientazioni preferenziali delle stesse fasi ?, ma ha messo in luce che la stessa fase ? segue le stesse orientazioni descritte dalla martensite da cui si trasforma durante il trattamento. Un effettivo decremento delle proprietà tensili è avvenuto dopo il trattamento termico di solubilizzazione a 1050 °C × 60 min, dove la microstruttura ricristallizzata decrementa la resistenza ultima a trazione sino a 925 MPa e lo snervamento sino a 825 MPa. D’altro canto, non è stato mostrato un significativo aumento dei valori di duttilità molto probabilmente per la formazione dell’?-case layer, il quale si è formato grazie alla diffusione di ossigeno nella superficie esterna dei campioni durante solubilizzazione. Nello stesso tempo, nonostante il medesimo raffreddamento in argon (60 min), i differenti spessori dei campioni hanno indotto differenti velocità di raffreddamento e, conseguentemente, differenti morfologie microstrutturali a temperatura ambiente. Infine, il processo di sabbiatura ha diminuito i valori di rugosità superficiale (– 50 %), ma ha aumentato la deformazione plastica nella superficie esterna dei campioni grazie all’impatto delle spere in vetro sulla stessa superficie. Nessuna variazione in termini di proprietà tensili è stato rilevato dopo il processo di sabbiatura. In relazione alla lega AlSi10Mg in condizioni as-built e post trattamento termico, le correlazioni tra la microdurezza Vickers e le proprietà tensili possono essere ben approssimante con le equazioni di Cahoon. Dalla comparazione dei valori reali e di quelli calcolati considerando i valori di snervamento, è stato ottenuto un fattore di correzione di 0.891 da inserire nell’equazione di Cahoon. D’altro canto, i campioni in Ti6Al4V, trattati termicamente a 704 °C e 740 °C, hanno mostrato una discrepanza tra gli stessi valori di durezza reali e quelli calcolati di circa il 21–22 %. Quindi, le differenti orientazioni delle fasi ? incrementano del 21–22 % le durezze che possono essere ottenute utilizzando l’equazione di Cahoon
Additive manufacturing of lightweight Al-Si-Mg and Ti-Al-V alloys via laser-powder bed fusion: post-heat treatment Optimization on Microstructure and Mechanical Properties
Emanuele, Ghio
2023
Abstract
AlSi7Mg, AlSi10Mg and Ti6Al4V lightweight alloys are widely used within automotive, aerospace, and biomedical fields where high mechanical performance and safety factors are required. In fact, the age-hardening aluminium alloys are characterized by high specific tensile strengths and good corrosion resistance, as well as the titanium alloy that show higher tensile strengths, corrosion resistance and cell biocompatibility. Adding the advantages conferred by the Laser-Powder Bed Fusion manufacturing technology, the application of these alloys can significantly increase. The present doctoral thesis analyses the effects induced by different heat treatments to evaluate their optimization on AlSi7Mg, AlSi10Mg and Ti6Al4V samples manufactured via Laser-Powder Bed Fusion. Both the AlSi7Mg and AlSi10Mg were firstly studied in the as-built conditions; in which the effects induced by the build platform pre-heated at 150 °C were carefully investigated along the total height (300 mm) of the samples. At the same time, the microstructural effects and the resultant mechanical properties obtained by the layer thickness (+ 40 ?m) and hatch spacing (– 150 ?m) variations were also investigated on the AlSi10Mg samples. Secondly, the effects induced by direct aging at 175 °C, 200 °C and 225 °C were also examined in order to homogenize the mechanical properties and HV microhardness from the bottom to the top regions of the manufactured samples. After just the 1–2 h treatment at 175 °C and 200 °C for the AlSi7Mg and AlSi10Mg alloys, respectively, the mechanical properties were already homogenized and optimized. The homogenization in mechanical properties was also evaluated after the solution heat treatment at 505 °C and artificial aging at 175 °C for both aluminium alloys. Even considering the samples in peak-aging conditions, the yield and ultimate tensile strength were always lower than those obtained by samples heat-treated in optimized direct aging conditions. These worsening effects were also reflected on the ductility, whose values were lowered of 11 %. Ti6Al4V samples manufactured via Laser-Powder Bed Fusion in different build orientations were analysed in as-built and heat-treated conditions. In order to reduce the anisotropy of the mechanical properties, the effects of two different annealing heat treatments at 704 °C and 740 °C were carefully investigated through SEM, XRD and EBSD measurements. Despite the different cooling pathways between both annealing heat treatments, and the consequent coarsening effects of the ?-phase laths (+ 23 %), no variation in terms of yield and ultimate tensile strengths were obtained. EBSD and SEM investigations did not show a preferential orientation of the ?-phase, but highlighted that the same ?-laths maintained the same ?’-martensite orientations during the ? ? ? + ?. The effective decrease of the tensile strengths was obtained after the solubilization heat treatment at 1050 °C × 60 min, due to the recrystallized microstructure. In fact, the ultimate tensile strength and the yield strength decreased to 925 and 825 MPa, respectively. At the same time, elongation values did not significantly due to the formation of an ?-case layer on account of the oxygen diffusion, on the sample surface, during the solubilization heat treatment. Moreover, the different thickness of the samples promoted several cooling pathways and, consequently, the formation of different microstructures at room temperature, despite the same fast cooling in argon gas (60 min). Lastly, the sand-blasting process decreased the surface roughness (– 50 %) but increases the plastic strain thanks to the impact of glass spheres on the sample surface. No variations in terms of tensile strengths were detected. In relation to the AlSi10Mg alloys in as-built and heat-treated conditions, the correlation between the HV microhardness and tensile strengths can be good approximated by Cahoon’s equations. From the comparison of the theoretical and experimental Vickers microhardness values, and those calculated by the yield strength, a correction factor of 0.891 was obtained to adjust Cahoon’s equation. On the other hand, Ti6Al4V samples heat-treated at 704 °C and 740 °C show a discrepancy between the real and calculated HV values of 21–22 %. Therefore, the ?-phase increase of about 21–22 % the HV values compared to those calculated with the Cahoon equation.File | Dimensione | Formato | |
---|---|---|---|
Doctoral_Thesis_Ghio_Final_Version.pdf
accesso aperto
Dimensione
26.04 MB
Formato
Adobe PDF
|
26.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193502
URN:NBN:IT:UNIPR-193502