This thesis is the outcome of a PhD research project conducted in the context of the Marie Sklodowska Curie international training network “SURFICE- Smart surface design for efficient ice protection and control”, with the general objective to pursue the rational design of icephobic materials. The current thesis is particularly aimed at understanding the mechanical and wetting properties that lead to icephobic performance by studying rigid surfaces with different hydrophobicity, soft substrates with different lubrication degree, and systems composed of soft and rigid materials, to identify the different ice detachment regimes using a horizontal shear ice adhesion setup. Once the different de-icing mechanisms on rigid and soft materials are identified, the existence of the liquid-like performance in the ice adhesion tests is discussed in those cases, where the ice adhesion strength is reduced but the ice slides continuously without a proper detachment, even on rigid substrates. For soft materials, the viscoelastic properties as well as the contact angle evolution depending on the humidity (adaptive wetting) are confirmed. The ice adhesion results exhibit that the traditional empirical relations that are useful to predict the icephobic performance does not consider the diverse de-icing mechanism than can occur at the interface with substrates of diverse mechanical properties. Therefore, the models that explain the icephobic behavior based on the work of adhesion on liquid water-substrate interaction and on the mechanical properties of the elastic materials need to be reconsidered, to also include the relevance of adaptive wetting and the non-ideally elastic character of a wider range of materials. Additionally, it is confirmed that the integration of rigid and soft components allows improving the icephobic performance by combining its attributes. This thesis provides a glance on the surface charateristics that could be used to desing icephobic devices for different applications. As a future perspective, it will be interesting to further confirm the existence of the liquid-like performance in the ice adhesion tests, or to explore the orientation of the surface roughness respect to the direction of de-icing force, since they can be powerful alternatives to design materials with durable icephobic properties.
Questa tesi è il risultato di un progetto di ricerca di dottorato condotto nel contesto della rete di formazione internazionale Marie Sklodowska Curie "SURFICE- Smart surface design for efficient ice protection and control", con l'obiettivo generale di perseguire la progettazione razionale di materiali ghiacciofobici. La presente tesi è particolarmente mirata a comprendere le proprietà meccaniche e di bagnatura che portano a prestazioni ghiacciofobiche studiando superfici rigide con diversa idrofobicità, substrati morbidi con diverso grado di lubrificazione e sistemi composti da materiali morbidi e rigidi, per identificare i diversi regimi di distacco del ghiaccio utilizzando una configurazione di adesione al ghiaccio a taglio orizzontale. Una volta identificati i diversi meccanismi di de-icing su materiali rigidi e morbidi, l'esistenza di prestazioni simili a quelle dei liquidi nei test di adesione al ghiaccio viene discussa in quei casi in cui la forza di adesione al ghiaccio è ridotta ma il ghiaccio scivola continuamente senza un distacco adeguato, anche su substrati rigidi. Per i materiali morbidi, vengono confermate le proprietà viscoelastiche e l'evoluzione dell'angolo di contatto in base all'umidità (bagnatura adattiva). I risultati dell'adesione al ghiaccio mostrano che le relazioni empiriche tradizionali utili per prevedere le prestazioni ghiacciofobiche non considerano i diversi meccanismi di sghiacciamento che possono verificarsi all'interfaccia con substrati di diverse proprietà meccaniche. Pertanto, i modelli che spiegano il comportamento ghiacciofobico basati sul lavoro di adesione sull'interazione acqua liquida-substrato e sulle proprietà meccaniche dei materiali elastici devono essere riconsiderati, per includere anche la rilevanza della bagnatura adattiva e il carattere non idealmente elastico di una gamma più ampia di materiali. Inoltre, è confermato che l'integrazione di componenti rigidi e morbidi consente di migliorare le prestazioni ghiacciofobiche combinandone gli attributi. Questa tesi fornisce uno sguardo alle caratteristiche di superficie che potrebbero essere utilizzate per progettare dispositivi ghiacciofobi per diverse applicazioni. Come prospettiva futura, sarà interessante confermare ulteriormente l'esistenza di prestazioni simili a quelle liquide nei test di adesione al ghiaccio o esplorare l'orientamento della rugosità superficiale rispetto alla direzione della forza di sghiacciamento, poiché possono essere potenti alternative per progettare materiali con proprietà ghiacciofobiche durevoli.
Rigid and soft materials for icephobicity: The role of surface and mechanical properties
OSPINA PATINO, ANNY CATALINA
2025
Abstract
This thesis is the outcome of a PhD research project conducted in the context of the Marie Sklodowska Curie international training network “SURFICE- Smart surface design for efficient ice protection and control”, with the general objective to pursue the rational design of icephobic materials. The current thesis is particularly aimed at understanding the mechanical and wetting properties that lead to icephobic performance by studying rigid surfaces with different hydrophobicity, soft substrates with different lubrication degree, and systems composed of soft and rigid materials, to identify the different ice detachment regimes using a horizontal shear ice adhesion setup. Once the different de-icing mechanisms on rigid and soft materials are identified, the existence of the liquid-like performance in the ice adhesion tests is discussed in those cases, where the ice adhesion strength is reduced but the ice slides continuously without a proper detachment, even on rigid substrates. For soft materials, the viscoelastic properties as well as the contact angle evolution depending on the humidity (adaptive wetting) are confirmed. The ice adhesion results exhibit that the traditional empirical relations that are useful to predict the icephobic performance does not consider the diverse de-icing mechanism than can occur at the interface with substrates of diverse mechanical properties. Therefore, the models that explain the icephobic behavior based on the work of adhesion on liquid water-substrate interaction and on the mechanical properties of the elastic materials need to be reconsidered, to also include the relevance of adaptive wetting and the non-ideally elastic character of a wider range of materials. Additionally, it is confirmed that the integration of rigid and soft components allows improving the icephobic performance by combining its attributes. This thesis provides a glance on the surface charateristics that could be used to desing icephobic devices for different applications. As a future perspective, it will be interesting to further confirm the existence of the liquid-like performance in the ice adhesion tests, or to explore the orientation of the surface roughness respect to the direction of de-icing force, since they can be powerful alternatives to design materials with durable icephobic properties.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_893213.pdf
accesso aperto
Dimensione
4.64 MB
Formato
Adobe PDF
|
4.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193721
URN:NBN:IT:UNIMIB-193721