This PhD Thesis centers on the recovery of silica from hexafluorosilicic acid (H₂SiF₆ or FSA), a hazardous by-product of fluorine and phosphate industries. The principal aim of the work was to process and transform FSA-derived silica, adjusting its structural and morphological characteristics, like particle size, porosity, and surface properties, to create materials with specific functionalities. The research explored two main applications for recovered silica. First, the application of recovered silica nanoparticles as reinforcing fillers in rubber compounds, specifically for the tire industry. Silica nanoparticles, known for enhancing mechanical strength, wear resistance, and viscoelastic properties, were synthesized by optimizing reaction parameters such as pH and temperature to control particle morphology. The silica was purified with different techniques and then dried via different methods to obtain a high-quality product. Detailed characterization through FT-IR, TGA, XRD, TEM, N₂-physisorption, NMR, and XPS ensured that the structural properties were suitable for further application. The silica particles, measuring around 20-30 nm, were then incorporated into Styrene Butadiene Rubber (SBR) matrices alongside typical vulcanization agents. Dynamic mechanical testing indicated that the FSA-derived silica, particularly after optimized drying and purification, imparted excellent reinforcing properties, comparable to commercial alternatives. The second area of focus involved developing porous silicate materials with tailored structures for environmental applications, such as heavy metal adsorption and photocatalysis. In one approach, macro-porous silicates with pore sizes between 120 and 350 nm were synthesized by integrating PEG of various molecular weights into FSA solutions, followed by ammonia-induced gelation. Additionally, mesoporous silicates were created using surfactant templates (CTAB and P123) to form mesoporous structures. Both types of porous materials were extensively analyzed through Hg porosimetry, N₂-physisorption, SEM, and TEM, ensuring the pore structure met the desired specifications. The materials were finally functionalized with TMS-EDTA to enhance their capacity for rare earth element (REEs) adsorption. In a simulated test with an aqueous solution containing concentrations of Dy, Nd, and Pr, functionalized materials demonstrated the ability to capture up to 30% of these metals, showcasing their potential in REEs recovery from magnetic waste. The versatility of FSA-derived silica was further explored by adapting it for microsphere synthesis via a micro-emulsion method, producing materials with interconnected macroporosity, branded as MICROSCAFS®. In this method, FSA-derived silica replaced the conventional precursor (TEOS), enabling the formation of microspheres through sol-gel chemistry and phase separation. Titanium dioxide (TiO₂) particles formed in situ, were uniformly embedded in the SiO₂ matrix. XRD and DRS analyses revealed that anatase was predominant, making these materials particularly effective in photodegradation tests of minocycline (MC), a pollutant of pharmaceutical industry. Under simulated sunlight, the FSA-derived MICROSCAFS® microspheres achieved complete degradation in two hours. This research underscores the potential of FSA-derived silica as a sustainable and versatile alternative to conventional silica sources. By transforming a hazardous by-product into high-value materials with applications across different industries, the project demonstrates the feasibility of integrating waste-derived materials into advanced applications. The findings indicate that FSA-derived silica not only meets the quality standards for commercial silica but also offers unique properties that can be harnessed in reinforcing rubber composites and in creating porous materials for environmental remediation.
Il lavoro riportato in questa Tesi si è concentrato sul recupero della silice dall'acido esafluorosilicico (H₂SiF₆ o FSA), un sottoprodotto pericoloso delle industrie del fluoro e dei fosfati. L'obiettivo principale del lavoro è stato quello di processare la silice derivata da FSA, modificando le sue caratteristiche strutturali e morfologiche, come la dimensione delle particelle, porosità e proprietà superficiali, per ottenere materiali con funzionalità specifiche. La ricerca ha esplorato due principali applicazioni per la silice recuperata. In primo luogo, è stata indagata un’applicazione come filler di rinforzo per compositi polimerici, in particolare per l’industria degli pneumatici. Le nanoparticelle di silice, note per migliorare la resistenza meccanica e le proprietà viscoelastiche, sono state sintetizzate ottimizzando parametri di reazione come pH e temperatura, per controllarne la morfologia e proprietà superficiali. Inoltre, si è posta l’attenzione sulla rimozione delle impurezze e sul metodo di asciugatura, capaci di determinare diverse caratteristiche del materiale finale e di conseguenza le proprietà in mescola. I campioni ottenuti sono stati analizzati tramite opportune tecniche di caratterizzazione, le quali hanno permesso di stabilire che le proprietà strutturali fossero idonee per il campo di applicazione. Le particelle di silice, di circa 20-30 nm, sono state poi incorporate in matrici di gomma stirene-butadiene (SBR) insieme ai tipici agenti di vulcanizzazione. Infine, i test meccanici hanno indicato che la silice derivata da FSA, soprattutto dopo ottimizzazione dell'essiccazione e della purificazione, ha conferito eccellenti proprietà rinforzanti, paragonabili alle alternative commerciali. Il secondo ambito di ricerca ha riguardato lo sviluppo di materiali porosi per un’applicazione nell'adsorbimento del recupero delle terre rare e della fotocatalisi. In primo luogo, sono stati sintetizzate silici macroporose con dimensioni dei pori comprese tra 120 e 350 nm, integrando come templanti PEG di diversi pesi molecolari nel processo di conversione dell’FSA. Inoltre, sono stati sintetizzate silici mesoporose utilizzando CTAB e P123 come templanti oroganici. Entrambi i tipi di materiali porosi sono stati ampiamente analizzati tramite porosimetria al Hg, fisisorbimento di N₂, SEM e TEM, per garantire che la struttura dei pori rispettasse le specifiche desiderate. I materiali sono stati infine funzionalizzati con TMS-EDTA per migliorare la loro capacità di adsorbimento di elementi delle terre rare. In un test simulato con una soluzione acquosa contenente concentrazioni di Dy, Nd e Pr, i materiali funzionalizzati hanno dimostrato la capacità di catturare fino al 30% di questi metalli, mostrando il loro potenziale per il recupero di terre rare da rifiuti magnetici. La versatilità della silice derivata da FSA è stata ulteriormente esplorata adattandola alla sintesi di microsfere tramite un metodo di micro-emulsione, producendo materiali con macroporosità interconnessa, noti come MICROSCAFS®. In questo metodo, la silice derivata da FSA ha sostituito il precursore convenzionale (TEOS), consentendo la formazione di microsfere tramite chimica sol-gel e separazione di fase. Il processo prevede la formazione in situ di nanoparticelle di TiO2 in fase anatasio, rendendo questi materiali particolarmente efficaci nei test di fotodegradazione della minociclina (MC), un inquinante dell’industria farmaceutica. Sotto luce solare simulata, i MICROSCAFS® derivati da FSA hanno raggiunto la degradazione completa dell’inquinante a seguito di un trattamento di due ore. Questo progetto di Tesi ha evidenziato il potenziale della silice derivata da FSA come alternativa sostenibile e versatile alle fonti di silice convenzionali, trasformando un sottoprodotto pericoloso in materiali di alto valore con applicazioni in diversi settori.
SILICA PRODUCTION FROM HEXAFLUOROSILICIC ACID RECOVERY PROCESS FOR FUNCTIONAL AND STRUCTURAL APPLICATIONS
MONTINI, DANIELE
2025
Abstract
This PhD Thesis centers on the recovery of silica from hexafluorosilicic acid (H₂SiF₆ or FSA), a hazardous by-product of fluorine and phosphate industries. The principal aim of the work was to process and transform FSA-derived silica, adjusting its structural and morphological characteristics, like particle size, porosity, and surface properties, to create materials with specific functionalities. The research explored two main applications for recovered silica. First, the application of recovered silica nanoparticles as reinforcing fillers in rubber compounds, specifically for the tire industry. Silica nanoparticles, known for enhancing mechanical strength, wear resistance, and viscoelastic properties, were synthesized by optimizing reaction parameters such as pH and temperature to control particle morphology. The silica was purified with different techniques and then dried via different methods to obtain a high-quality product. Detailed characterization through FT-IR, TGA, XRD, TEM, N₂-physisorption, NMR, and XPS ensured that the structural properties were suitable for further application. The silica particles, measuring around 20-30 nm, were then incorporated into Styrene Butadiene Rubber (SBR) matrices alongside typical vulcanization agents. Dynamic mechanical testing indicated that the FSA-derived silica, particularly after optimized drying and purification, imparted excellent reinforcing properties, comparable to commercial alternatives. The second area of focus involved developing porous silicate materials with tailored structures for environmental applications, such as heavy metal adsorption and photocatalysis. In one approach, macro-porous silicates with pore sizes between 120 and 350 nm were synthesized by integrating PEG of various molecular weights into FSA solutions, followed by ammonia-induced gelation. Additionally, mesoporous silicates were created using surfactant templates (CTAB and P123) to form mesoporous structures. Both types of porous materials were extensively analyzed through Hg porosimetry, N₂-physisorption, SEM, and TEM, ensuring the pore structure met the desired specifications. The materials were finally functionalized with TMS-EDTA to enhance their capacity for rare earth element (REEs) adsorption. In a simulated test with an aqueous solution containing concentrations of Dy, Nd, and Pr, functionalized materials demonstrated the ability to capture up to 30% of these metals, showcasing their potential in REEs recovery from magnetic waste. The versatility of FSA-derived silica was further explored by adapting it for microsphere synthesis via a micro-emulsion method, producing materials with interconnected macroporosity, branded as MICROSCAFS®. In this method, FSA-derived silica replaced the conventional precursor (TEOS), enabling the formation of microspheres through sol-gel chemistry and phase separation. Titanium dioxide (TiO₂) particles formed in situ, were uniformly embedded in the SiO₂ matrix. XRD and DRS analyses revealed that anatase was predominant, making these materials particularly effective in photodegradation tests of minocycline (MC), a pollutant of pharmaceutical industry. Under simulated sunlight, the FSA-derived MICROSCAFS® microspheres achieved complete degradation in two hours. This research underscores the potential of FSA-derived silica as a sustainable and versatile alternative to conventional silica sources. By transforming a hazardous by-product into high-value materials with applications across different industries, the project demonstrates the feasibility of integrating waste-derived materials into advanced applications. The findings indicate that FSA-derived silica not only meets the quality standards for commercial silica but also offers unique properties that can be harnessed in reinforcing rubber composites and in creating porous materials for environmental remediation.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_849993.pdf
embargo fino al 12/02/2028
Dimensione
8.37 MB
Formato
Adobe PDF
|
8.37 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193726
URN:NBN:IT:UNIMIB-193726