Studying how volcano-tectonic rifts develop is fundamental for seismic and volcanic hazard assessment. Recent dyking events in southern Iceland, highlight the relevance of knowing how these areas work. In Iceland, the architecture and mechanisms delineating slow-spreading margins can be studied directly on the surface. Within this PhD thesis, three volcano-tectonic rifts of the Northern Volcanic Zone (NVZ) of Iceland, have been studied with great detail, with the final purposes of i) reconstructing the architecture of the studied rifts, ii) recognising the magmatic fingerprint on the architecture of the NVZ, and iii) evaluate the direction over which the deformation, within the NVZ, is developing. To reach these goals, remote-sensing analyses and field checks were realised. Features constituting the studied rifts were mainly studied through 15 original orthomosaics and 3 Digital Surface Models (DSMs), realised from a series of historical aerial photos by applying a Structure from Motion (SfM) photogrammetry technique. Areas not covered by original photogrammetry-derived models were studied thanks to the ArcticDEM and Google Satellite. A total of 8291 features were mapped at a scale of 1:50,000, and classified into i) eruptive fissures (864), ii) extension fractures (4841), and iii) normal faults scarps (2558). Quantitative analyses were performed to improve the characterisation of rifts’ architecture, 2558 vertical offsets were collected, and 820 N106°E-striking transects were depicted to evaluate variations in fracture intensity, rift width, and dilation values within the studied areas. Moreover, 293 fault-slip profiles were realised to assess the along-rift axis deformation. The complex architecture of the studied volcano-tectonic rifts has been interpreted as the result of a double deformation process. On one side, there is the magmatic fingerprint due to dyke-induced surface deformation; on the other, the current architecture also reflects the overall northward propagation of the Northern Volcanic Zone of Iceland. The lateral propagation of dykes from central volcanoes, located at the centre or near one edge of the volcano-tectonic rifts, led to an outward pattern of deformation from the volcanoes. Regions closer to the magmatic source are subjected to more frequent and stronger deformation events, leading to an outward tapering pattern of fault-slip profiles. Here, cumulative fault offsets are higher closer to central volcanoes and tend to decrease moving away. This hypothesis is further confirmed by the decrease in fracture intensity and dilation values away from central volcanoes. The overall northward propagation of the studied rifts, and thus the entire NVZ, is reflected in the greater number of northward tapering fault-slip profiles and the reduction of dilation values and structure frequency towards the north. The northward propagation of the NVZ led to the NW bending of the northernmost portion of the Fremrinamar and the Askja Rifts. The sudden decrease in structure frequency and dilation values, north of the Jökulsá á Fjöllum River which intersects the Fremrinamar and Askja Rifts, seems to reflect the presence of a transform zone at depth over which the deformation is locally restrained. The presence of several NW-striking structures and the NW-striking morpho-structural lineaments of the Jökulsá á Fjöllum River, seem to define an older, and no longer active, location of the plate boundary, that is currently acting as a transfer zone.
Studiare come si sviluppano i rift vulcano-tettonici è fondamentale per la valutazione del rischio sismico e vulcanico. I recenti eventi di rifting dell’Islanda Meridionale hanno ulteriormente evidenziato l'importanza di comprendere il funzionamento di queste aree. In Islanda, l'architettura e i meccanismi che delineano i margini a lenta espansione possono essere studiati direttamente in superficie. All'interno di questo progetto di dottorato sono stati analizzati, con grande dettaglio, tre rift vulcano-tectonici appartenenti alla Northern Volcanic Zone (NVZ) islandese, al fine di i) ricostruire l'architettura dei rift studiati, ii) riconoscere l’impronta magmatica nella definizione dell’architettura della NVZ e iii) valutare la direzione in cui si sviluppa la deformazione all'interno della NVZ. Per raggiungere questi obiettivi, sono state effettuate analisi di telerilevamento e di terreno. Le strutture che costituiscono i rift studiati sono state analizzate principalmente attraverso 15 ortomosaici e 3 Modelli Digitali di Superficie (DSM), realizzati a partire da un set di foto aeree storiche, tramite l’applicazione di tecniche di Structure from Motion. Un totale di 8291 strutture è stato mappato a una scala di 1:50.000 e classificate in i) fratture eruttive (864), ii) fessure estensionali (4841) e iii) faglie normali (2558). Sono state effettuate diverse analisi quantitative al fine di migliorare la caratterizzazione dell'architettura dei rift. Sono stati raccolti 2558 offset verticali e sono stati definiti 820 profili trasversali, con orientamento N106°E, per valutare variazioni nella frequenza delle fratture, larghezza dei rift e nei valori di dilatazione, all'interno delle aree studiate. Sono stati inoltre realizzati 293 fault-slip profiles per la valutazione della deformazione lungo l'asse dei rift. La complessa architettura dei rift vulcano-tectonici è stata interpretata come il risultato di un doppio processo di deformazione. Da un lato c'è l’impronta magmatica, dovuta alla deformazione superficiale indotta dalle intrusioni; dall'altro, l'architettura attuale riflette la generale propagazione della Northern Volcanic Zone verso nord. La propagazione laterale delle intrusioni magmatiche dai vulcani centrali, situati al centro o in corrispondenza di un’estremità dei rift indagati, ha portato a un pattern di deformazione che si sviluppa a partire dai vulcani e verso l'esterno. Le regioni più vicine alle fonti magmatiche, sono soggette a eventi di deformazione più frequenti e più intensi, risultando in fault-slip profiles che mostrano una riduzione degli offset allontanandosi dai vulcani centrali stessi. Vicino ai vulcani centrali, gli offset cumulati sono maggiori e tendono a diminuire allontanandosi da essi. Questa ipotesi è ulteriormente confermata dalla diminuzione della frequenza di fratturazione e dei valori di dilatazione, man mano che ci si allontana dai vulcani centrali. La generale propagazione verso nord dei rift indagati, e quindi dell'intera Northern Volcanic Zone, si riflette nel maggior numero di fault-slip profiles che mostrano una riduzione degli offset cumulati verso nord. La propagazione verso nord della Northern Volcanic Zone ha inoltre portato alla rotazione verso ovest della parte più settentrionale dei Rift Fremrinamar e Askja. Il brusco calo della frequenza delle strutture e dei valori di dilatazione a nord del Fiume Jökulsá á Fjöllum, sembrerebbe riflettere la presenza di una zona trasforme in profondità, in corrispondenza della quale la deformazione viene limitata. La presenza di diverse strutture con orientamento NW e i lineamenti morfo-strutturali del Fiume Jökulsá á Fjöllum, sembrerebbero definire una posizione più antica, e non più attiva, dell’asse della Northern Volcanic Zone, che attualmente funge da zona di trasferimento.
Understanding the relation between magmatism and surficial deformation on slow-spreading ridges: a key study from the Northern Volcanic Zone of Iceland
PEDICINI, MARTINA
2025
Abstract
Studying how volcano-tectonic rifts develop is fundamental for seismic and volcanic hazard assessment. Recent dyking events in southern Iceland, highlight the relevance of knowing how these areas work. In Iceland, the architecture and mechanisms delineating slow-spreading margins can be studied directly on the surface. Within this PhD thesis, three volcano-tectonic rifts of the Northern Volcanic Zone (NVZ) of Iceland, have been studied with great detail, with the final purposes of i) reconstructing the architecture of the studied rifts, ii) recognising the magmatic fingerprint on the architecture of the NVZ, and iii) evaluate the direction over which the deformation, within the NVZ, is developing. To reach these goals, remote-sensing analyses and field checks were realised. Features constituting the studied rifts were mainly studied through 15 original orthomosaics and 3 Digital Surface Models (DSMs), realised from a series of historical aerial photos by applying a Structure from Motion (SfM) photogrammetry technique. Areas not covered by original photogrammetry-derived models were studied thanks to the ArcticDEM and Google Satellite. A total of 8291 features were mapped at a scale of 1:50,000, and classified into i) eruptive fissures (864), ii) extension fractures (4841), and iii) normal faults scarps (2558). Quantitative analyses were performed to improve the characterisation of rifts’ architecture, 2558 vertical offsets were collected, and 820 N106°E-striking transects were depicted to evaluate variations in fracture intensity, rift width, and dilation values within the studied areas. Moreover, 293 fault-slip profiles were realised to assess the along-rift axis deformation. The complex architecture of the studied volcano-tectonic rifts has been interpreted as the result of a double deformation process. On one side, there is the magmatic fingerprint due to dyke-induced surface deformation; on the other, the current architecture also reflects the overall northward propagation of the Northern Volcanic Zone of Iceland. The lateral propagation of dykes from central volcanoes, located at the centre or near one edge of the volcano-tectonic rifts, led to an outward pattern of deformation from the volcanoes. Regions closer to the magmatic source are subjected to more frequent and stronger deformation events, leading to an outward tapering pattern of fault-slip profiles. Here, cumulative fault offsets are higher closer to central volcanoes and tend to decrease moving away. This hypothesis is further confirmed by the decrease in fracture intensity and dilation values away from central volcanoes. The overall northward propagation of the studied rifts, and thus the entire NVZ, is reflected in the greater number of northward tapering fault-slip profiles and the reduction of dilation values and structure frequency towards the north. The northward propagation of the NVZ led to the NW bending of the northernmost portion of the Fremrinamar and the Askja Rifts. The sudden decrease in structure frequency and dilation values, north of the Jökulsá á Fjöllum River which intersects the Fremrinamar and Askja Rifts, seems to reflect the presence of a transform zone at depth over which the deformation is locally restrained. The presence of several NW-striking structures and the NW-striking morpho-structural lineaments of the Jökulsá á Fjöllum River, seem to define an older, and no longer active, location of the plate boundary, that is currently acting as a transfer zone.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_804032.pdf
accesso aperto
Dimensione
25.2 MB
Formato
Adobe PDF
|
25.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193768
URN:NBN:IT:UNIMIB-193768