The dissertation, Beyond Personalized Information Retrieval, focuses on advancing methods in Personalized Information Retrieval (PIR) and Context-aware Information Retrieval (CIR) to meet diverse user needs more effectively. The research addresses both dynamic and static personalization challenges and contributes several new algorithms, resources, and empirical evaluations that enhance search relevance across varied user contexts and domains. In the area of PIR, significant work was conducted on query-aware user modeling, introducing the Denoising Attention Mechanism. This mechanism filters irrelevant data to construct cleaner, more contextually relevant user models in real-time, improving result precision in personalized search scenarios. Another core project in PIR, PARK (Personalized Academic Retrieval with Knowledge-graphs), leverages knowledge graph embeddings to personalize academic search, effectively capturing long-term user preferences and improving retrieval relevance in specialized research contexts. Beyond personalization, research on domain-adaptive models led to the development of DESIRE-ME (Domain-Enhanced Supervised Information Retrieval using Mixture-of-Experts). DESIRE-ME employs domain-specific model components that dynamically adapt to query topics, thereby enhancing retrieval effectiveness and achieving strong results in zero-shot scenarios. This work also included the Dynamic Domain Adaptive Models project, which used a high-level classification approach to adapt retrieval systems across multiple domains while maintaining computational efficiency. Further contributions include the creation of resources such as a Multi-Domain Benchmark for evaluating personalized search across academic fields and SE-PQAEF, a resource for personalized question answering and expert finding on StackExchange. These benchmarks provide comprehensive datasets and reproducible baseline evaluations that support future research into PIR and CIR. Overall, this dissertation advances both theoretical and practical knowledge in PIR and CIR, introducing new methodologies, models, and benchmarks that lay the groundwork for future innovations in adaptive, user-centered, and context-aware information retrieval systems.
La tesi, Beyond Personalized Information Retrieval, si concentra sullo sviluppo di metodi avanzati per il Personalized Information Retrieval (PIR) e Context-aware Information Retrieval (CIR) al fine di soddisfare più efficacemente le diverse esigenze degli utenti. La ricerca affronta le sfide della personalizzazione sia dinamica che statica e introduce nuovi algoritmi, risorse ed esperimenti empirici che migliorano la pertinenza dei risultati di ricerca in diversi contesti e domini utente. Nel campo del PIR, un lavoro significativo è stato svolto sulla modellazione dell’utente in base alla query, introducendo il Denoising Attention Mechanism. Questo meccanismo filtra i dati irrilevanti per costruire modelli utente più puliti e contestualmente pertinenti in tempo reale, migliorando la precisione dei risultati nelle ricerche personalizzate. Un altro progetto centrale è PARK (Personalized Academic Retrieval with Knowledge-graphs), che utilizza grafi di conoscenza per personalizzare la ricerca accademica, catturando efficacemente le preferenze a lungo termine degli utenti e migliorando la rilevanza dei risultati in contesti di ricerca specializzati. Oltre alla personalizzazione, la ricerca sui modelli adattivi per domini ha portato allo sviluppo di DESIRE-ME (Domain-Enhanced Supervised Information Retrieval using Mixture-of-Experts). DESIRE-ME utilizza componenti specifici per ogni dominio che si adattano dinamicamente agli argomenti delle query, migliorando l’efficacia del recupero e ottenendo ottimi risultati anche in scenari di zero-shot learning. Questo lavoro ha incluso anche lo sviluppo dei Dynamic Domain Adaptive Models, che utilizzano un approccio basato su classificazioni di alto livello per adattare i sistemi di recupero a diversi domini mantenendo un'elevata efficienza computazionale. Ulteriori contributi includono la creazione di risorse come un Multi-Domain Benchmark per valutare la ricerca personalizzata in diversi campi accademici e SE-PQAEF, una risorsa per domande e risposte personalizzate e il riconoscimento di esperti su piattaforme come StackExchange. Questi benchmark forniscono dati e valutazioni riproducibili a supporto della ricerca futura su PIR e CIR. In sintesi, questa tesi avanza la comprensione teorica e pratica del PIR e del CIR, introducendo nuovi modelli, metodologie e benchmark che gettano le basi per futuri sviluppi di Information Retrieval Systems più adattivi, centrati sull’utente e consapevoli del contesto.
Beyond Personalized Information Retrieval
KASELA, PRANAV
2025
Abstract
The dissertation, Beyond Personalized Information Retrieval, focuses on advancing methods in Personalized Information Retrieval (PIR) and Context-aware Information Retrieval (CIR) to meet diverse user needs more effectively. The research addresses both dynamic and static personalization challenges and contributes several new algorithms, resources, and empirical evaluations that enhance search relevance across varied user contexts and domains. In the area of PIR, significant work was conducted on query-aware user modeling, introducing the Denoising Attention Mechanism. This mechanism filters irrelevant data to construct cleaner, more contextually relevant user models in real-time, improving result precision in personalized search scenarios. Another core project in PIR, PARK (Personalized Academic Retrieval with Knowledge-graphs), leverages knowledge graph embeddings to personalize academic search, effectively capturing long-term user preferences and improving retrieval relevance in specialized research contexts. Beyond personalization, research on domain-adaptive models led to the development of DESIRE-ME (Domain-Enhanced Supervised Information Retrieval using Mixture-of-Experts). DESIRE-ME employs domain-specific model components that dynamically adapt to query topics, thereby enhancing retrieval effectiveness and achieving strong results in zero-shot scenarios. This work also included the Dynamic Domain Adaptive Models project, which used a high-level classification approach to adapt retrieval systems across multiple domains while maintaining computational efficiency. Further contributions include the creation of resources such as a Multi-Domain Benchmark for evaluating personalized search across academic fields and SE-PQAEF, a resource for personalized question answering and expert finding on StackExchange. These benchmarks provide comprehensive datasets and reproducible baseline evaluations that support future research into PIR and CIR. Overall, this dissertation advances both theoretical and practical knowledge in PIR and CIR, introducing new methodologies, models, and benchmarks that lay the groundwork for future innovations in adaptive, user-centered, and context-aware information retrieval systems.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_846965.pdf
accesso aperto
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193771
URN:NBN:IT:UNIMIB-193771