Three-dimensional modelling of human tissues is an area in constant evolution which is gradually changing and advancing biomedical research. Although the optimization of these platforms is still a challenging work, in literature multiple are the evidence of the advantages and potentialities of those models. The solid cancers research, accounts for one of the major fields of 3D modeling application. In the last decade, different models were generated also in the oncohematology research area, starting a new way to study blood cancers. In the first part of this thesis, I present an extensive review on the evolution of 3D modelling of hematologic tumors, discussing the comparison with classical in vitro models and outline the variety of materials and techniques available to approach three-dimensional cell cultures. The second and third sections discuss two different works in preparation for the submission, about two different 3D in vitro models of chronic lymphocytic leukemia (CLL) microenvironments. The two platforms aim to reproduce the lymphoid compartments (i.e. bone marrow and lymph node) mainly interested by CLL expansion, with two different aims. The first one exploits the use of a microgravity bioreactor to stimulate stromal cells organization inside a gelatine-based porous scaffold, and to create two separate environments one inside and one outside the scaffold. In this way we were able to study CLL cells behavior and mobilization in and out the 3D lymphoid tissue, also after administration of targeted therapies. The second model aims to scale up the abovementioned one, harnessing millifluidic perfusion bioreactors. This platform allowed us to maturate 3D lymphoid tissues scaffolds, in which we recirculated CLL cells in a bloodstream-like manner. By doing so, leukemic cells can freely circulate in the system and enter/exit the 3D tissues enabling the analysis of dissemination, homing and resistance to therapies mechanisms.
Lo sviluppo di modelli in vitro 3D di tessuti umani è un settore in costante evoluzione, che sta cambiando e facendo progredire gradualmente la ricerca biomedica. Sebbene l'ottimizzazione di queste piattaforme sia ancora oggi un processo complicato, in letteratura sono molteplici le prove dei vantaggi e delle potenzialità di questi modelli. La ricerca sui tumori solidi rappresenta uno dei principali campi di applicazione delle colture cellulari 3D. Nell'ultimo decennio sono stati generati diversi modelli anche nel campo della ricerca oncoematologica, dando inizio a un nuovo modo di studiare i tumori del sangue. Nella prima parte di questa tesi, presento un'ampia rassegna sull'evoluzione della bioingegnerizzazione 3D di tumori ematologici, affrontando la tematica del confronto con i classici modelli in vitro e delineando la varietà di materiali e tecniche disponibili per avvicinarsi alle colture cellulari tridimensionali. La seconda e terza sezione discutono due diversi lavori in preparazione per la pubblicazione, circa la generazione di due diversi modelli 3D in vitro di microambiente della leucemia linfatica cronica (CLL). Le due piattaforme mirano a riprodurre i compartimenti linfoidi (es. midollo osseo e linfonodo) principalmente interessati dal l'espansione della CLL, con due obiettivi diversi. Il primo sfrutta l'uso di un bioreattore a microgravità per stimolare l'organizzazione delle cellule stromali all'interno di un supporto poroso a base di gelatina e creare due ambienti neoplastici separati, uno dentro e uno fuori dello scaffale. In questo modo siamo stati in grado di studiare il comportamento delle cellule leucemiche e la loro mobilizzazione dentro e fuori dal tessuto linfoide 3D, anche dopo la somministrazione di terapie target. Il secondo modello mira a potenziare il modello appena citato con l’utilizzo di un sistema di perfusione in millifluidica. Questa piattaforma ci ha permesso di coltivare e far maturare gli scaffold 3D di tessuti linfoidi, in cui abbiamo fatto ricircolare le cellule di CLL in modo da simulare il circolo sanguigno. In tal modo, le cellule leucemiche possono circolare liberamente nel sistema ed entrare/uscire i tessuti 3D permettendo l'analisi dei meccanismi che guidano la disseminazione, l’homing e la resistenza alle terapie.
Advancing preclinical research on hematological malignancies: generation of new 3D in vitro models to dissect leukemic cells dissemination and response to targeted therapies
BAROZZI, DAFNE
2025
Abstract
Three-dimensional modelling of human tissues is an area in constant evolution which is gradually changing and advancing biomedical research. Although the optimization of these platforms is still a challenging work, in literature multiple are the evidence of the advantages and potentialities of those models. The solid cancers research, accounts for one of the major fields of 3D modeling application. In the last decade, different models were generated also in the oncohematology research area, starting a new way to study blood cancers. In the first part of this thesis, I present an extensive review on the evolution of 3D modelling of hematologic tumors, discussing the comparison with classical in vitro models and outline the variety of materials and techniques available to approach three-dimensional cell cultures. The second and third sections discuss two different works in preparation for the submission, about two different 3D in vitro models of chronic lymphocytic leukemia (CLL) microenvironments. The two platforms aim to reproduce the lymphoid compartments (i.e. bone marrow and lymph node) mainly interested by CLL expansion, with two different aims. The first one exploits the use of a microgravity bioreactor to stimulate stromal cells organization inside a gelatine-based porous scaffold, and to create two separate environments one inside and one outside the scaffold. In this way we were able to study CLL cells behavior and mobilization in and out the 3D lymphoid tissue, also after administration of targeted therapies. The second model aims to scale up the abovementioned one, harnessing millifluidic perfusion bioreactors. This platform allowed us to maturate 3D lymphoid tissues scaffolds, in which we recirculated CLL cells in a bloodstream-like manner. By doing so, leukemic cells can freely circulate in the system and enter/exit the 3D tissues enabling the analysis of dissemination, homing and resistance to therapies mechanisms.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_889735.pdf
embargo fino al 29/02/2028
Dimensione
36.23 MB
Formato
Adobe PDF
|
36.23 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193898
URN:NBN:IT:UNIMIB-193898