Glioblastoma (GBM) remains one of the deadliest primary brain tumors, with a median survival of only 15 months despite aggressive treatments. A key factor in GBM’s persistence is the presence of glioma stem cells (GSCs), a subpopulation known to drive tumor initiation, progression, and resistance to therapy. Aurora kinases (AurKs), crucial regulators of cell division, have emerged as promising therapeutic targets. This study aims to evaluate the efficacy of combining temozolomide (TMZ), the standard first-line treatment for GBM, with danusertib (DAN), an AurK inhibitor, across different GSC subtypes. Using five patient-derived GSC lines, we observed significant cytotoxic effects from the TMZ and DAN combination, independent of GSC ploidy status. Interestingly, our findings suggest a novel mechanism of cell death that bypasses caspase activation, disrupting mitotic progression. Post-treatment analyses revealed an increase in cellular size and chromosomal content, alongside evidence of micronucleation and multinucleation, consistent with mitotic catastrophe. Live-cell imaging further confirmed these findings, also because mitotic catastrophes occurs independently of p53 activity and two GSC lines had TP53 gene mutations. Following this initial evaluation, the study progressed to develop 3D GBM models, including tumoroids and glioblastoma organoids, and zebrafish embryo xenografts (ZePDX). Tumoroids generated from three GSC lines, embedded in Matrigel to mimic the extracellular matrix, displayed a unique spatial organization: quiescent, differentiated cells in the core and actively proliferating cells at the periphery. Combined drug treatment led to reduced tumoroid growth and possible matrisome rearrangement, suggesting a stress or injury response, though this requires further investigation. In an attempt to model the GBM microenvironment more accurately, GSCs were introduced into brain organoids through co-culturing or direct injection. However, after 45 days, GSCs remained visible but did not proliferate, likely due to suboptimal culture conditions, and drug testing was not performed. Finally, the ZePDX model was employed to assess the tumorigenic capacity of GSCs and the in vivo efficacy of TMZ and DAN. Despite the low number of injected cells (200 cells/embryo), 65% of the embryos developed tumors within 3 days, with a twofold increase in tumor size. Combined treatment led to significant tumor regression at both 1 and 3 days post-treatment, a result not observed with individual drug treatments. In summary, this work demonstrates the potential of combining TMZ with DAN to overcome GBM’s resistance mechanisms and suggests further validation in complex models is necessary to understand the therapeutic impact on GBM heterogeneity and tumor microenvironment.
Il glioblastoma (GBM) rappresenta uno dei tumori cerebrali primari più letali, con una sopravvivenza media di soli 15 mesi nonostante i trattamenti aggressivi. Un fattore chiave della persistenza del GBM è la presenza di cellule staminali tumorali (GSC), una sottopopolazione in grado di guidare l'inizio, la progressione e la resistenza alla terapia. Le chinasi Aurora (AurKs), regolatori essenziali del ciclo cellulare, sono emerse come promettenti bersagli terapeutici. Questo studio mira a valutare l'efficacia della combinazione di temozolomide (TMZ), il trattamento standard di prima linea per il GBM, con danusertib (DAN), un inibitore delle AurKs, su diversi sottotipi di GSC. Utilizzando cinque linee di GSC derivate da pazienti, abbiamo osservato effetti citotossici significativi dalla combinazione di TMZ e DAN, indipendentemente dallo stato di ploidia delle GSC. I risultati suggeriscono un nuovo meccanismo di morte cellulare che bypassa l'attivazione delle caspasi, interrompendo la progressione mitotica. Le analisi post trattamento hanno rivelato un aumento delle dimensioni cellulari e del contenuto cromosomico, insieme a fenomeni di micronucleazione e multinucleazione, compatibili con la catastrofe mitotica. Esperimenti di live-cell imaging hanno confermato questi risultati. Un’ulteriore conferma emerge dal fatto che due linee GSC presentano mutazioni a carico del gene di p53 compromettendone la funzione, infatti le catastrofi mitotiche sono indipendentemente dall’attività di p53. Dopo questa valutazione, si sono sviluppati dei modelli più complessi di GBM, come tumoroidi, organoidi di glioblastoma e xenotrapianti in embrioni di zebrafish (ZePDX). I tumoroidi, generati da tre linee di GSC e incorporati in Matrigel per mimare la componente della matrice extracellulare, hanno mostrato un’organizzazione spaziale peculiare: cellule quiescenti e differenziate nel nucleo interno e cellule attivamente proliferanti e meno differenziate all'esterno. Il trattamento combinato ha ridotto la crescita dei tumoroidi e suggerito un possibile riarrangiamento del matrisoma, indicando una risposta allo stress o al danno da trattamento, che necessita di ulteriori approfondimenti. Per modellare meglio il microambiente del GBM, le GSC sono state introdotte in organoidi cerebrali, tramite co-cultura o iniezione diretta. Tuttavia, dopo 45 giorni, le GSC erano ancora visibili, ma non proliferavano, probabilmente a causa di condizioni di coltura subottimali, e il trattamento farmacologico non è stato testato. Infine, il modello ZePDX è stato utilizzato per valutare la capacità tumorigenica delle GSC e l'efficacia in vivo di TMZ e DAN. Nonostante il basso numero di cellule iniettate (200 cellule/embrione), il 65% degli embrioni ha sviluppato tumori entro 3 giorni, con un raddoppio della dimensione tumorale. Il trattamento combinato ha portato a una regressione significativa della massa tumorale sia a 1 che a 3 giorni post-trattamento, un risultato non osservato con i singoli trattamenti. In sintesi, questo lavoro dimostra il potenziale della combinazione di TMZ e DAN nel superare i meccanismi di resistenza del GBM e suggerisce che ulteriori validazioni in modelli complessi siano necessarie per comprendere l'impatto terapeutico sulla eterogeneità del GBM e sul microambiente tumorale.
Overcoming glioma stem cell resistance through mitotic catastrophe: a multi-model evaluation of temozolomide and danusertib combination therapy
GIAMBRA, MARTINA
2025
Abstract
Glioblastoma (GBM) remains one of the deadliest primary brain tumors, with a median survival of only 15 months despite aggressive treatments. A key factor in GBM’s persistence is the presence of glioma stem cells (GSCs), a subpopulation known to drive tumor initiation, progression, and resistance to therapy. Aurora kinases (AurKs), crucial regulators of cell division, have emerged as promising therapeutic targets. This study aims to evaluate the efficacy of combining temozolomide (TMZ), the standard first-line treatment for GBM, with danusertib (DAN), an AurK inhibitor, across different GSC subtypes. Using five patient-derived GSC lines, we observed significant cytotoxic effects from the TMZ and DAN combination, independent of GSC ploidy status. Interestingly, our findings suggest a novel mechanism of cell death that bypasses caspase activation, disrupting mitotic progression. Post-treatment analyses revealed an increase in cellular size and chromosomal content, alongside evidence of micronucleation and multinucleation, consistent with mitotic catastrophe. Live-cell imaging further confirmed these findings, also because mitotic catastrophes occurs independently of p53 activity and two GSC lines had TP53 gene mutations. Following this initial evaluation, the study progressed to develop 3D GBM models, including tumoroids and glioblastoma organoids, and zebrafish embryo xenografts (ZePDX). Tumoroids generated from three GSC lines, embedded in Matrigel to mimic the extracellular matrix, displayed a unique spatial organization: quiescent, differentiated cells in the core and actively proliferating cells at the periphery. Combined drug treatment led to reduced tumoroid growth and possible matrisome rearrangement, suggesting a stress or injury response, though this requires further investigation. In an attempt to model the GBM microenvironment more accurately, GSCs were introduced into brain organoids through co-culturing or direct injection. However, after 45 days, GSCs remained visible but did not proliferate, likely due to suboptimal culture conditions, and drug testing was not performed. Finally, the ZePDX model was employed to assess the tumorigenic capacity of GSCs and the in vivo efficacy of TMZ and DAN. Despite the low number of injected cells (200 cells/embryo), 65% of the embryos developed tumors within 3 days, with a twofold increase in tumor size. Combined treatment led to significant tumor regression at both 1 and 3 days post-treatment, a result not observed with individual drug treatments. In summary, this work demonstrates the potential of combining TMZ with DAN to overcome GBM’s resistance mechanisms and suggests further validation in complex models is necessary to understand the therapeutic impact on GBM heterogeneity and tumor microenvironment.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_804476.pdf
embargo fino al 12/02/2027
Dimensione
15.95 MB
Formato
Adobe PDF
|
15.95 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/194916
URN:NBN:IT:UNIMIB-194916