The integration of artificial intelligence (AI) and digital transformation has accelerated the evolution of digital triplet (D3) architectures, aligning with the human-centric imperatives of Industry 5.0. By embedding human cognitive functions and perceptual intelligence into both physical and virtual domains, the digital triplet paradigm establishes an adaptive synergy between humans and machines. This research advances intelligent digital twins beyond traditional data-driven methodologies by incorporating reasoning, predictive modeling, and cognitive computing, enabling real-time adaptive decision-making in industrial systems. This thesis systematically explores the evolution of digital twins, introducing a hierarchical digital triplet framework that integrates human cognition, volition, and adaptive intelligence to enhance cyber-physical interactions. By defining maturity, domination, and volition levels within the digital triplet hierarchy, this research demonstrates its capability to enhance perceptual and cognitive capacities in cyberspace. Three case studies illustrate its role in brownfield development, intelligent retrofitting, and resilient smart industrial automation, with a primary focus on pneumatically actuated flow control valves in the oil and gas industry. The proposed framework enhances digital maturity and automation intelligence, addressing the complexity of novel multiphysics mathematical model in valve-tank system through AI-driven, data-driven methodologies and within increased cybernetic orders. The digital triplet paradigm fosters system intelligence and resilience by integrating soft sensing, predictive analytics, and prescriptive intelligence. By bridging the gap between experimental observations and data-driven models, it advances the cognitive and perceptual capabilities of intelligent mechatronic systems. This research employs machine learning-based random forest regressors to construct soft sensors for flow control valves, improving their predictive accuracy and adaptive control mechanisms. The Optimized R² Score Matrix reveals high predictability scores (R² ≈ 1.00) for critical feature relationships, such as solenoid valve water flow predicting interpolated flow rate and valve displacement predicting diaphragm pressure, while moderate predictability (R² ≈ 0.6-0.9) highlights areas for further feature engineering and multivariate modeling. Furthermore, deep learning models including multilayer perceptrons (MLP), long short-term memory (LSTM), spiking neural networks (SNNs), and liquid state machines (LSMs) are integrated with Hebbian and non-Hebbian learning principles to predict valve behaviors and enable memory-augmented cognitive capacities. Optimization techniques such as mini-batch processing and Xavier initialization enhance predictive robustness for actuation pressure and displacement, with the optimized MLP model achieving an R² of 0.9901 for pneumatic pressure and displacement prediction. Additionally, a hybrid SNN-LSTM model with six layers significantly improved tank level prediction accuracy (R² = 0.9777), highlighting the effectiveness of combining spiking-based temporal dynamics with long-term memory architectures. The three-layer MLP model with an additional Leaky Integrate-and-Fire (LIF) encoding layer demonstrated moderate performance improvements in displacement prediction (R² = 0.9425) and pneumatic pressure prediction (R² = 0.8841), validating the role of biologically inspired computation in industrial AI applications. This thesis underscores the transformative potential of digital triplet architectures by merging AI, cognitive computing, Hebbian and non-Hebbian learning, and neuromorphic principles. It highlights the strategic role of hierarchical digital models, brain-inspired learning mechanisms, and advanced analytics in achieving resilient, perceptive, and heuristic capabilities for critical mechatronics and industrial automation applications. By leveraging bio-inspired AI and adaptive intelligence, this research lays the foundation for next-generation cognitive digital twins that self-optimize, predict, and respond autonomously advancing the cognitive automation paradigm in Industry 5.0 and beyond.
L'integrazione dell’intelligenza artificiale (AI) e della trasformazione digitale ha accelerato l’evoluzione delle architetture Digital Triplet (D3), allineandosi ai principi umanocentrici di Industria 5.0. Incorporando le funzioni cognitive umane e l'intelligenza percettiva nei domini fisici e virtuali, il paradigma del digital triplet stabilisce una sinergia adattiva tra esseri umani e macchine. Questa ricerca amplia il concetto di digital twin intelligente, superando le metodologie tradizionali basate sui dati e integrando ragionamento, modellazione predittiva e computazione cognitiva, consentendo un processo decisionale adattivo e in tempo reale nei sistemi industriali. Questa tesi analizza sistematicamente l'evoluzione dei digital twin, introducendo un framework gerarchico del digital triplet, che integra cognizione umana, volizione e intelligenza adattiva per migliorare le interazioni cyber-fisiche. Definendo i livelli di maturità, dominazione e volizione all'interno della gerarchia del digital triplet, la ricerca dimostra la sua capacità di potenziare le capacità percettive e cognitive nello spazio cibernetico. Tre studi di caso illustrano il ruolo del digital triplet nello sviluppo di siti brownfield, retrofit intelligenti e automazione industriale resiliente, con particolare attenzione alle valvole di controllo del flusso pneumaticamente attuate nell'industria petrolifera e del gas. Il framework proposto migliora la maturità digitale e l’intelligenza automatizzata, affrontando la complessità di un modello matematico multifisico innovativo per il sistema valvola-serbatoio, utilizzando metodologie guidate dall’IA e basate sui dati, e operando entro ordini cibernetici avanzati. Il paradigma digital triplet favorisce l’intelligenza e la resilienza del sistema, integrando soft sensing, analisi predittiva e intelligenza prescrittiva. Colmando il divario tra osservazioni sperimentali e modelli data-driven, la ricerca avanza le capacità cognitive e percettive dei sistemi meccatronici intelligenti. Questa ricerca impiega regressori random forest basati su machine learning per costruire soft sensor per le valvole di controllo del flusso, migliorando la precisione predittiva e i meccanismi di controllo adattivo. La Optimized R² Score Matrix evidenzia elevati punteggi di predittività (R² ≈ 1.00) per le relazioni chiave tra le caratteristiche, come la portata d'acqua della valvola solenoide che prevede il flusso interpolato e lo spostamento della valvola che prevede la pressione sul diaframma. Tuttavia, le correlazioni moderate (R² ≈ 0.6-0.9) evidenziano la necessità di ulteriori perfezionamenti nel feature engineering e nella modellazione multivariata. Inoltre, modelli di deep learning come multilayer perceptron (MLP), long short-term memory (LSTM), spiking neural networks (SNNs) e liquid state machines (LSMs) sono integrati con i principi dell'apprendimento hebbiano e non-hebbiano per predire il comportamento delle valvole e potenziare le capacità cognitive basate sulla memoria. Le tecniche di ottimizzazione, come la mini-batch processing e l'inizializzazione Xavier, migliorano la robustezza predittiva della pressione di attuazione e dello spostamento, con un modello MLP ottimizzato che ha raggiunto un R² di 0.9901 per la predizione della pressione pneumatica e dello spostamento. Inoltre, un modello ibrido SNN-LSTM con sei strati ha migliorato significativamente l'accuratezza della previsione del livello del serbatoio (R² = 0.9777), dimostrando l'efficacia della combinazione tra dinamiche temporali basate sui picchi neuronali e architetture di memoria a lungo termine. Il modello MLP a tre strati con un livello di codifica Leaky Integrate-and-Fire (LIF) ha mostrato miglioramenti moderati nella predizione dello spostamento (R² = 0.9425) e della pressione pneumatica (R² = 0.8841), validando il ruolo del calcolo bio-ispirato nelle applicazioni di IA industriale. Questa tesi evidenzia il potenziale trasformativo delle architetture digital triplet, unificando intelligenza artificiale, computazione cognitiva, apprendimento hebbiano e non-hebbiano, e principi neuromorfici. Sottolinea il ruolo strategico dei modelli digitali gerarchici, dei meccanismi di apprendimento ispirati al cervello e dell'analisi avanzata nel raggiungimento di capacità resilienti, percettive ed euristiche per applicazioni critiche nell’automazione industriale e nella meccatronica. Sfruttando IA bio-ispirata e intelligenza adattiva, questa ricerca pone le basi per la prossima generazione di digital twin cognitivi, in grado di auto-ottimizzarsi, prevedere e rispondere autonomamente, avanzando così il paradigma dell'automazione cognitiva nell'Industria 5.0 e oltre.
Digital Triplet Paradigm Based Brain Like Intelligence for Augmenting the Resilience of Intelligent Mechatronics, Towards Mitigating the Complexity of Cognitive Computing in the Oil and Gas Industry 5.0 Context
ALIMAM, HASSAN
2025
Abstract
The integration of artificial intelligence (AI) and digital transformation has accelerated the evolution of digital triplet (D3) architectures, aligning with the human-centric imperatives of Industry 5.0. By embedding human cognitive functions and perceptual intelligence into both physical and virtual domains, the digital triplet paradigm establishes an adaptive synergy between humans and machines. This research advances intelligent digital twins beyond traditional data-driven methodologies by incorporating reasoning, predictive modeling, and cognitive computing, enabling real-time adaptive decision-making in industrial systems. This thesis systematically explores the evolution of digital twins, introducing a hierarchical digital triplet framework that integrates human cognition, volition, and adaptive intelligence to enhance cyber-physical interactions. By defining maturity, domination, and volition levels within the digital triplet hierarchy, this research demonstrates its capability to enhance perceptual and cognitive capacities in cyberspace. Three case studies illustrate its role in brownfield development, intelligent retrofitting, and resilient smart industrial automation, with a primary focus on pneumatically actuated flow control valves in the oil and gas industry. The proposed framework enhances digital maturity and automation intelligence, addressing the complexity of novel multiphysics mathematical model in valve-tank system through AI-driven, data-driven methodologies and within increased cybernetic orders. The digital triplet paradigm fosters system intelligence and resilience by integrating soft sensing, predictive analytics, and prescriptive intelligence. By bridging the gap between experimental observations and data-driven models, it advances the cognitive and perceptual capabilities of intelligent mechatronic systems. This research employs machine learning-based random forest regressors to construct soft sensors for flow control valves, improving their predictive accuracy and adaptive control mechanisms. The Optimized R² Score Matrix reveals high predictability scores (R² ≈ 1.00) for critical feature relationships, such as solenoid valve water flow predicting interpolated flow rate and valve displacement predicting diaphragm pressure, while moderate predictability (R² ≈ 0.6-0.9) highlights areas for further feature engineering and multivariate modeling. Furthermore, deep learning models including multilayer perceptrons (MLP), long short-term memory (LSTM), spiking neural networks (SNNs), and liquid state machines (LSMs) are integrated with Hebbian and non-Hebbian learning principles to predict valve behaviors and enable memory-augmented cognitive capacities. Optimization techniques such as mini-batch processing and Xavier initialization enhance predictive robustness for actuation pressure and displacement, with the optimized MLP model achieving an R² of 0.9901 for pneumatic pressure and displacement prediction. Additionally, a hybrid SNN-LSTM model with six layers significantly improved tank level prediction accuracy (R² = 0.9777), highlighting the effectiveness of combining spiking-based temporal dynamics with long-term memory architectures. The three-layer MLP model with an additional Leaky Integrate-and-Fire (LIF) encoding layer demonstrated moderate performance improvements in displacement prediction (R² = 0.9425) and pneumatic pressure prediction (R² = 0.8841), validating the role of biologically inspired computation in industrial AI applications. This thesis underscores the transformative potential of digital triplet architectures by merging AI, cognitive computing, Hebbian and non-Hebbian learning, and neuromorphic principles. It highlights the strategic role of hierarchical digital models, brain-inspired learning mechanisms, and advanced analytics in achieving resilient, perceptive, and heuristic capabilities for critical mechatronics and industrial automation applications. By leveraging bio-inspired AI and adaptive intelligence, this research lays the foundation for next-generation cognitive digital twins that self-optimize, predict, and respond autonomously advancing the cognitive automation paradigm in Industry 5.0 and beyond.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Alimam.pdf
embargo fino al 30/09/2026
Dimensione
8.71 MB
Formato
Adobe PDF
|
8.71 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/195763
URN:NBN:IT:UNIVPM-195763