The research project "Eco ZES" aims to develop an innovative Decision Support System (DSS) designed to promote eco-sustainable interventions in industrial areas. The initiative stems from the context of the Interregional Special Economic Zone (ZES) Jonica Puglia-Basilicata, established to foster the economic development of Southern Italy through tax incentives and bureaucratic simplifications. However, the "Eco ZES" initiative seeks to integrate the economic benefits of traditional ZES with models of environmental sustainability, promoting renewable energy, circular economy practices, and green infrastructures. The research adopted a multidisciplinary approach, leveraging advanced modeling and simulation techniques to analyze complex decision-making scenarios and assess the long-term economic, social, and environmental impacts. The developed DSS was tested in 15 ZES areas in Basilicata, identifying innovative solutions such as energy efficiency, advanced wastewater treatment, waste reduction, and the promotion of sustainable mobility. The decision model employs multi-criteria methods (MCDA) to weigh sustainability criteria and compare alternative scenarios. The results confirm the validity of the DSS, which stands out for its flexibility to adapt to different geographic and sectoral contexts, providing transparent and sustainability-oriented recommendations. The integration of circular economy principles and emerging technologies, such as artificial intelligence and big data, represents a future prospect to further enhance the system's effectiveness. The research significantly contributes to the promotion of eco-sustainable industrial policies, offering a tool to balance economic development and environmental protection, encouraging conscious and responsible investments in the productive areas of Southern Italy and beyond.
Il progetto di ricerca "Eco ZES" nasce con l’obiettivo di sviluppare un Sistema di Supporto Decisionale (DSS) innovativo, mirato a promuovere interventi ecosostenibili nelle aree industriali. L’idea nasce nel contesto della Zona Economica Speciale (ZES) Interregionale Jonica Puglia-Basilicata, istituita per favorire lo sviluppo economico del Mezzogiorno tramite agevolazioni fiscali e semplificazioni burocratiche. Tuttavia, l’iniziativa "Eco ZES" punta a integrare i benefici economici delle ZES tradizionali con modelli di sostenibilità ambientale, promuovendo energie rinnovabili, economia circolare e infrastrutture verdi. La ricerca ha adottato un approccio multidisciplinare, basato su tecniche avanzate di modellizzazione e simulazione, per analizzare scenari decisionali complessi e valutare gli impatti economici, sociali e ambientali a lungo termine. Il DSS sviluppato è stato testato nelle 15 aree ZES della Basilicata, identificando soluzioni innovative come l’efficienza energetica, il trattamento avanzato delle acque reflue, la riduzione dei rifiuti e la promozione della mobilità sostenibile. Il modello decisionale impiega metodi multicriterio (MCDA) per ponderare i criteri di sostenibilità e confrontare scenari alternativi. I risultati confermano la validità del DSS, che si distingue per la flessibilità di adattarsi a diversi contesti geografici e settoriali, fornendo raccomandazioni trasparenti e orientate alla sostenibilità. L’integrazione di principi di economia circolare e tecnologie emergenti, come intelligenza artificiale e big data, rappresenta una prospettiva futura per migliorare ulteriormente l’efficacia del sistema. La ricerca contribuisce significativamente alla promozione di politiche industriali ecosostenibili, offrendo uno strumento per bilanciare sviluppo economico e tutela ambientale, incoraggiando investimenti consapevoli e responsabili nelle aree produttive del Mezzogiorno e oltre.
Definizione di un modello SSD per l’ottimizzazione e gestione sostenibile delle Zone Economiche Speciali (ECO-ZES)”
DI CARLO, FERDINANDO
2025
Abstract
The research project "Eco ZES" aims to develop an innovative Decision Support System (DSS) designed to promote eco-sustainable interventions in industrial areas. The initiative stems from the context of the Interregional Special Economic Zone (ZES) Jonica Puglia-Basilicata, established to foster the economic development of Southern Italy through tax incentives and bureaucratic simplifications. However, the "Eco ZES" initiative seeks to integrate the economic benefits of traditional ZES with models of environmental sustainability, promoting renewable energy, circular economy practices, and green infrastructures. The research adopted a multidisciplinary approach, leveraging advanced modeling and simulation techniques to analyze complex decision-making scenarios and assess the long-term economic, social, and environmental impacts. The developed DSS was tested in 15 ZES areas in Basilicata, identifying innovative solutions such as energy efficiency, advanced wastewater treatment, waste reduction, and the promotion of sustainable mobility. The decision model employs multi-criteria methods (MCDA) to weigh sustainability criteria and compare alternative scenarios. The results confirm the validity of the DSS, which stands out for its flexibility to adapt to different geographic and sectoral contexts, providing transparent and sustainability-oriented recommendations. The integration of circular economy principles and emerging technologies, such as artificial intelligence and big data, represents a future prospect to further enhance the system's effectiveness. The research significantly contributes to the promotion of eco-sustainable industrial policies, offering a tool to balance economic development and environmental protection, encouraging conscious and responsible investments in the productive areas of Southern Italy and beyond.File | Dimensione | Formato | |
---|---|---|---|
tesi dottorato di ricerca Lo VECCHIO con firme.pdf
accesso aperto
Dimensione
14.41 MB
Formato
Adobe PDF
|
14.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/195765
URN:NBN:IT:UNIBAS-195765