This thesis condenses the dynamic modeling of blast resistant glazed façades. A theoretical point of view is assumed and the problem is approached at different levels. For applications involving impulsive loads, laminated glass is usually employed so that an equivalent ductility is achieved and the risk related to the projection of fragments is reduced. These composites are made of glass plies, which are coupled by the cohesive action of polymeric interlayers. To this purpose, suitable structural models are introduced and numerically tested for both beams and plates. Fractional calculus (differential equations involving fractional derivatives) is adopted to describe the viscoelasticity at the level of the interlayer. As a main advantage, only two parameters are needed to define the relaxation function for commercial polymers. The comparison with the classical method, relying on an expansion in Prony series of the relaxation law, further highlights the simplifications obtainable with fractional approach. Since glass is a brittle material, there are few possibilities to significantly improve its resistance against blast loads. Therefore, one can employ dissipative devices to interpose between the panels and the back structure: the energy released by the load is partially absorbed by sacrificial (crushing) elements. This is theoretically demonstrated with reference to a paradigmatic problem. The dissipative unit is composed of a movable piston in unilateral contact, on its two opposite sides, with shock absorbers capable of plastic deformation, which are activated respectively during the compression and suction phase of blast load. Through a parametric analysis, criteria are proposed for the optimal design of such dissipative unit. The proposed technical solution is compared with a linear viscous dashpot, which is not as efficient as the previous one in limiting the effects of the first compression phase, but it can considerably reduce subsequent oscillations. A hybrid device, where viscous dampers and crushing components are integrated in parallel, seems to represent the best compromise. From an engineering perspective, it is important to asses the load-bearing capacity of the whole glazing system instead of the sole panels. As guide for structural design, a simple analytical model is proposed. The rear structure is represented by a pre-tensioned cable connected in series with a spring element; while each glass panel is reduced to a nonlinear oscillator via to Rayleigh’s method. The model allows to tune the inertia and the stiffness of the back structure. Generally, a compliant back structure allows an optimal absorption of energy and, consequently, preserve the panels. As a related problem, regulations provides also for testing procedures that define the capacity of glazed surfaces to withstand against soft-body impacts. These impulsive actions are concentrated on a small area, which dynamically changes according to the deformed shape of impacting body. The pendulum test is first analyzed with a simple approach based upon an equivalent linear and nonlinear 2-DoF system. The time history analysis is complemented with energetic considerations that, with reasonable assumptions, can directly provide the maximum stress in the panel through an equivalent static load. Moreover, a finite element tool has been developed. The comparison between the predictions of the proposed methods with that obtained from experiments and other advanced software, indicates the accuracy of this engineering approach and its range of applicability.
Questa tesi tratta la modellazione dinamica di facciate di vetro resistenti alle esplosioni. Si assume un punto di vista teorico e si affronta il problema a diversi livelli. Per applicazioni che comportano carichi impulsivi, viene solitamente impiegato vetro laminato in modo da ottenere una duttilità equivalente e ridurre il rischio legato alla proiezione di frammenti. Questi compositi sono costituiti da strati di vetro, i quali sono accoppiati dall’azione coesiva di intercalari polimerici. A tal proposito, vengono introdotti e testati numericamente modelli strutturali ad hoc sia per le travi sia per le piastre. Il calcolo frazionario (equazioni differenziali che coinvolgono derivate frazionarie) viene adottato per descrivere il comportamento viscoelastico dell’intercalare. Come vantaggio principale, solo due parametri sono necessari per definire la funzione di rilassamento di polimeri commerciali. Il confronto con il metodo classico, basato sullo sviluppo in serie di Prony della funzione di rilassamento, evidenzia ulteriormente le semplificazioni ottenibili dall’approccio frazionario. Poiché il vetro è un materiale fragile, ci sono poche possibilità di migliorare significativamente la sua resistenza ai carichi esplosivi. Tuttavia, si possono impiegare dei dissipatori da interporre tra i pannelli e la retro-struttura, in modo che l’energia sprigionata dal carico venga parzialmente assorbita da elementi sacrificali (shock absorbers). Ciò è dimostrato analiticamente con riferimento a un problema paradigmatico. Il dissipatore è composto da un pistone mobile a contatto unilaterale, sui due lati opposti, con ammortizzatori capaci di deformazione plastica, che vengono attivati rispettivamente durante la fase di compressione e risucchio del carico esplosivo. Attraverso un’analisi parametrica, vengono proposti dei criteri per la progettazione ottimale di tale unità dissipativa. Inoltre, viene eseguito il confrontato con un dissipatore viscoso lineare, il quale non è efficiente nel limitare gli effetti della prima fase di compressione, ma può ridurre notevolmente le successive oscillazioni del sistema. Un dispositivo ibrido, in cui smorzatori viscosi e shock absorbers sono impiegati in parallelo, sembra rappresentare il miglior compromesso. Da un punto di vista ingegneristico, è importante valutare la capacità portante dell’intera facciata anziché dei singoli pannelli. A tal proposito, viene introdotto un semplice modello analitico che possa servire da guida in fase di progettazione. La retro-struttura è rappresentata da un cavo in tensione collegato in serie con un elemento elastico; mentre ogni pannello di vetro è ridotto a un oscillatore non-lineare tramite il metodo di Rayleigh. Questo modello analitico permette di calibrare l’inerzia e la rigidezza della retro-struttura. In genere, una retro-struttura cedevole permette un assorbimento ottimale dell’energia sprigionata dal carico e, di conseguenza, preserva l’integrità dei pannelli. Come problema correlato, le normative forniscono anche indicazioni per valutare la resistenza dei pannelli di vetro nei confronti degli urti. Queste azioni impulsive si concentrano su una piccola area, che cambia dinamicamente in base alla deformata del corpo urtante. Il test del pendolo viene analizzato con un approccio analitico basato su un sistema a 2-gdl (gradi di libertà). L’analisi della risposta dinamica è integrata da considerazioni energetiche che, con ipotesi ragionevoli, possono fornire la massima sollecitazione nel pannello di vetro attraverso un carico statico equivalente. Inoltre, viene sviluppato uno strumento agli elementi finiti con ampio range di applicazioni. Il confronto tra le previsioni dei metodi proposti con quelle ottenute da esperimenti e altri software avanzati, indica l’accuratezza di questo approccio ingegneristico.
Modellazione dinamica di sistemi in vetro resistenti a esplosioni
Luca, Viviani
2022
Abstract
This thesis condenses the dynamic modeling of blast resistant glazed façades. A theoretical point of view is assumed and the problem is approached at different levels. For applications involving impulsive loads, laminated glass is usually employed so that an equivalent ductility is achieved and the risk related to the projection of fragments is reduced. These composites are made of glass plies, which are coupled by the cohesive action of polymeric interlayers. To this purpose, suitable structural models are introduced and numerically tested for both beams and plates. Fractional calculus (differential equations involving fractional derivatives) is adopted to describe the viscoelasticity at the level of the interlayer. As a main advantage, only two parameters are needed to define the relaxation function for commercial polymers. The comparison with the classical method, relying on an expansion in Prony series of the relaxation law, further highlights the simplifications obtainable with fractional approach. Since glass is a brittle material, there are few possibilities to significantly improve its resistance against blast loads. Therefore, one can employ dissipative devices to interpose between the panels and the back structure: the energy released by the load is partially absorbed by sacrificial (crushing) elements. This is theoretically demonstrated with reference to a paradigmatic problem. The dissipative unit is composed of a movable piston in unilateral contact, on its two opposite sides, with shock absorbers capable of plastic deformation, which are activated respectively during the compression and suction phase of blast load. Through a parametric analysis, criteria are proposed for the optimal design of such dissipative unit. The proposed technical solution is compared with a linear viscous dashpot, which is not as efficient as the previous one in limiting the effects of the first compression phase, but it can considerably reduce subsequent oscillations. A hybrid device, where viscous dampers and crushing components are integrated in parallel, seems to represent the best compromise. From an engineering perspective, it is important to asses the load-bearing capacity of the whole glazing system instead of the sole panels. As guide for structural design, a simple analytical model is proposed. The rear structure is represented by a pre-tensioned cable connected in series with a spring element; while each glass panel is reduced to a nonlinear oscillator via to Rayleigh’s method. The model allows to tune the inertia and the stiffness of the back structure. Generally, a compliant back structure allows an optimal absorption of energy and, consequently, preserve the panels. As a related problem, regulations provides also for testing procedures that define the capacity of glazed surfaces to withstand against soft-body impacts. These impulsive actions are concentrated on a small area, which dynamically changes according to the deformed shape of impacting body. The pendulum test is first analyzed with a simple approach based upon an equivalent linear and nonlinear 2-DoF system. The time history analysis is complemented with energetic considerations that, with reasonable assumptions, can directly provide the maximum stress in the panel through an equivalent static load. Moreover, a finite element tool has been developed. The comparison between the predictions of the proposed methods with that obtained from experiments and other advanced software, indicates the accuracy of this engineering approach and its range of applicability.File | Dimensione | Formato | |
---|---|---|---|
Viviani_tesi_dottorato.pdf
accesso aperto
Dimensione
19.95 MB
Formato
Adobe PDF
|
19.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196170
URN:NBN:IT:UNIPR-196170