The main research activity of my PhD research project involved the design of 3D-printable metallic liquid heatsinks for power semiconductor devices. A first part of the work, in collaboration with the company Poseico S.p.A. of Genoa, concerned the design of cold plates for press-pack type power devices. In particular, with specific finite element thermo-fluid dynamic simulation campaigns, some geometries equipped with an internal block of parallel channels were optimised. After the manufacturing of a first version, during the characterizations with a specific measuring bench, some problems of obstruction of the internal channels emerged, with the consequent appearance of hot spots on the exchange surfaces. We then proceeded with the optimization of the project, introducing funnel fittings and improving the printing parameters, in particular by reducing the diameter of the metal powder used. The latest version produced showed performance very similar to the ones estimated by FEM simulations. The heat sink created, now considered a mature product, is ready for testing on a complete converter, before being definitively placed on the market. A second part of the research activity, again in collaboration with Poseico S.p.A., concerned the design of a heat sink similar to the one described previously, but with a rectangular shape and suitable for cooling 3 power modules. The simulations, with which the new lamellar geometries were compared with the traditional serpentine ones, showed a notable improvement in performance, in particular with regard to the significantly reduced pressure drop, for the same flow rate. The fabrication of a prototype and the related characterizations with a measurement bench are planned for the next few months. A further important activity of my doctoral career concerned the design of direct coolers for power modules. These devices consist of 3D printed tanks equipped with nozzles, from which the refrigerant liquid comes out and directly hits the baseplate of the module to be cooled, reducing the thermal path compared to traditional solutions. A first square version was made for a 600-W resistor, with both 9 and 16 nozzles. With appropriate simulation campaigns and an automatic optimization algorithm, the diameter of the nozzles and their height were optimized. The performances obtained from the first prototypes are in line with what was predicted by the simulations. Other marginal research activities carried out are described in the thesis, with the main results obtained and the related considerations.
L’attività di ricerca principale del mio progetto di ricerca del dottorato ha riguardato la progettazione di dissipatori a liquido metallici fabbricabili con stampa 3D per dispositivi a semiconduttore di potenza. Una prima parte del lavoro, in collaborazione con l’azienda Poseico S.p.A. di Genova, ha riguardato la progettazione di coldplate per dispositivi di potenza di tipo press-pack. In particolare, con apposite campagne di simulazioni termofluidodinamiche agli elementi finiti, sono state ottimizzate alcune geometrie dotate di blocco interno di canali paralleli. Dopo la fabbricazione di una prima versione, durante le caratterizzazioni con apposito banco di misura sono emersi alcuni problemi di ostruzione dei canali interni, con conseguente comparsa di punti caldi sulle superfici di scambio. Si è quindi proceduto con l’ottimizzazione del progetto, introducendo raccordi ad imbuto e migliorando i parametri di stampa, in particolare riducendo il diametro della polvere di metallo utilizzata. L’ultima versione prodotta ha mostrato prestazioni molto simili a quelle previste con le simulazioni. Il dissipatore realizzato, ormai considerabile un prodotto maturo, è pronto per le prove su un convertitore completo, prima della definitiva immissione nel mercato. Una seconda parte dell’attività di ricerca, ancora in collaborazione con Poseico S.p.A., ha riguardato la progettazione di un dissipatore analogo a quello descritto in precedenza, ma di forma rettangolare e adatto al raffreddamento di 3 moduli di potenza. Le simulazioni, con le quali sono state confrontate le nuove geometrie lamellari con quelle tradizionali a serpentina, hanno mostrato un notevole miglioramento delle prestazioni, in particolare per quanto riguarda la perdita di carico, notevolmente ridotta, a parità di portata. La fabbricazione di un prototipo e le relative caratterizzazioni con banco di misura sono pianificate per i prossimi mesi. Un’ulteriore attività importante del mio percorso di dottorato ha riguardato la progettazione di cooler diretti per moduli di potenza. Tali dispositivi consistono in vasche stampate in 3D dotate di ugelli, dai quali fuoriesce il liquido refrigerante che colpisce direttamente il baseplate del modulo da raffreddare, riducendo il percorso termico rispetto alle soluzioni tradizionali. È stata realizzata una prima versione quadrata per un resistore da 600 W, sia con 9 che con 16 ugelli. Con opportune campagne di simulazione e un algoritmo di ottimizzazione automatica si è proceduto all’ottimizzazione del diametro degli ugelli e della loro altezza. Le prestazioni ottenute dai primi prototipi sono in linea con quanto previsto dalle simulazioni. Altre attività di ricerca marginali svolte sono descritte nella tesi, con i principali risultati ottenuti e le relative considerazioni.
Development of innovative 3D-printable liquid coolers for power semiconductor devices and modules
Davide, Spaggiari
2024
Abstract
The main research activity of my PhD research project involved the design of 3D-printable metallic liquid heatsinks for power semiconductor devices. A first part of the work, in collaboration with the company Poseico S.p.A. of Genoa, concerned the design of cold plates for press-pack type power devices. In particular, with specific finite element thermo-fluid dynamic simulation campaigns, some geometries equipped with an internal block of parallel channels were optimised. After the manufacturing of a first version, during the characterizations with a specific measuring bench, some problems of obstruction of the internal channels emerged, with the consequent appearance of hot spots on the exchange surfaces. We then proceeded with the optimization of the project, introducing funnel fittings and improving the printing parameters, in particular by reducing the diameter of the metal powder used. The latest version produced showed performance very similar to the ones estimated by FEM simulations. The heat sink created, now considered a mature product, is ready for testing on a complete converter, before being definitively placed on the market. A second part of the research activity, again in collaboration with Poseico S.p.A., concerned the design of a heat sink similar to the one described previously, but with a rectangular shape and suitable for cooling 3 power modules. The simulations, with which the new lamellar geometries were compared with the traditional serpentine ones, showed a notable improvement in performance, in particular with regard to the significantly reduced pressure drop, for the same flow rate. The fabrication of a prototype and the related characterizations with a measurement bench are planned for the next few months. A further important activity of my doctoral career concerned the design of direct coolers for power modules. These devices consist of 3D printed tanks equipped with nozzles, from which the refrigerant liquid comes out and directly hits the baseplate of the module to be cooled, reducing the thermal path compared to traditional solutions. A first square version was made for a 600-W resistor, with both 9 and 16 nozzles. With appropriate simulation campaigns and an automatic optimization algorithm, the diameter of the nozzles and their height were optimized. The performances obtained from the first prototypes are in line with what was predicted by the simulations. Other marginal research activities carried out are described in the thesis, with the main results obtained and the related considerations.File | Dimensione | Formato | |
---|---|---|---|
PHD THESIS DAVIDE SPAGGIARI.pdf
non disponibili
Dimensione
7.14 MB
Formato
Adobe PDF
|
7.14 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196177
URN:NBN:IT:UNIPR-196177