The growing energy demand, rising greenhouse gas emissions, and dwindling fossil fuel reserves call for solutions to mitigate climate change using renewable energy sources. In this scenario, bio-waste is emerging as an alternative renewable source that is fundamental to meet the population′s current and future energy needs. Organic waste, such as sewage sludge, livestock manure, residues from the agri-food industry, and the organic fraction of municipal solid waste (OFMSW), has historically been regarded as a challenging waste stream, but now the perception is changing as these materials present significant opportunities for resource recovery. By leveraging advanced treatment technologies, organic waste can be utilized to generate renewable energy, and produce by-products that replenish essential nutrients in soils also resulting in minimize landfilling. Transforming traditional waste treatment facilities based on anaerobic digestion (AD) into biorefineries represents a crucial opportunity in the framework of a circular economy. This study highlights the potential of using combined technologies to optimize AD process and underlines how useful the joint processes of multiple organic matrices can be to increase material valorization. For the scope, two different pre-treated OFMSW suspensions collected from two anaerobic digestion plants, wet and semi-dry, were tested through biomethanation tests in combination with several additives. Co-digestions of OFMSW were tested with 4 organic waste from sewage sludge treatments, such as: dewatered sludge coming out of the sewage treatment plant; biochar from sludge pyrolysis; hydrochar and liquid HTC from the hydrothermal carbonization of sludge. Specifically, dewatered sludge and HTC liquid as they are characterized by high water content, were tested in a ratio of 1.0:2.3 to OFMSW; while biochar and hydrochar being carbonaceous solids were treated as solid additives by loading them in a concentration of 13 g/L to the amount of OFMSW. Anaerobic digestion batch tests were conducted to evaluate co-digestion with four additives for both OFMSW from the wet plant (Scenario A) and the semi-dry plant (Scenario B). Mono-digestion of each OFMSW represents the baseline and was compared with its four co-digestion scenarios to assess variations in process efficiency based on methane production volume. These tests were aimed at determining the BMP (Biochemical Methane Potential) of new substrates mixtures to evaluate the effectiveness of different industrial plant scenarios that, from the perspective of biorefinery, put multiple integrated technological solutions in series to improve process efficiency and achieve higher methane yields as well as digestate-derived products suitable for agricultural and industrial applications. The results revealed that the additive yielding the highest increase in methane production during co-digestion with OFMSW is the HTC liquid. Meanwhile, hydrochar and biochar, both added at a concentration of 13 g/LOFMSW, demonstrated a comparable synergistic effect, resulting in higher methane production during co-digestion than through the mono-digestion of each material. In contrast, for dewatered sludge, the co-digestion ratio of 1.0:2.3 (additive:OFMSW) did not show a significant advantage in terms of methane production; it was below 10%, which is insufficient to confirm a synergistic effect from these materials. For the investigated scenarios, some innovative layouts were proposed to enable the combined use of different substrates and different technologies arranged in series. The aim is to create a centralized hub for organic waste treatment, where residues from one process can be repurposed to enhance the efficiency of another. By addressing key challenges, such as the optimization of organic waste management and identifying scalable solutions, this work contributes to the advancement of innovative waste treatment strategies. The findings emphasize that biorefineries play a central role in converting organic waste into high-value outputs, aligning environmental and economic objectives. Transforming waste treatment facilities into biorefineries capable of processing waste from multiple sectors is an opportunity that, within the framework of a circular economy, should not be missed.
La crescente domanda di energia, l’aumento delle emissioni di gas serra e il progressivo esaurimento delle riserve di combustibili fossili richiedono soluzioni per mitigare il cambiamento climatico utilizzando fonti di energia rinnovabili. In questo contesto, i rifiuti organici stanno emergendo come una fonte rinnovabile alternativa, fondamentale per soddisfare il fabbisogno energetico attuale e futuro della popolazione. I rifiuti organici come i fanghi di depurazione, gli effluenti di allevamento, i residui dell’industria agroalimentare e la frazione organica dei rifiuti solidi urbani (FORSU), sono stati storicamente considerati un flusso di rifiuti problematico. Tuttavia, questa percezione sta cambiando poiché tali materiali offrono opportunità significative per il recupero delle risorse. Sfruttando tecnologie di trattamento avanzate, i rifiuti organici possono essere utilizzati per generare energia rinnovabile e produrre sottoprodotti che reintegrano nutrienti essenziali nei suoli, riducendo al contempo lo smaltimento in discarica. La trasformazione degli impianti tradizionali di trattamento dei rifiuti basati sulla digestione anaerobica in bioraffinerie, rappresenta un’opportunità cruciale nel quadro di un’economia circolare. Questo studio evidenzia il grande potenziale dell’utilizzo di tecnologie combinate per ottimizzare il processo di digestione anaerobica e sottolinea l’utilità dei processi congiunti che coinvolgono più matrici organiche per incrementare la valorizzazione dei materiali. A tal fine, sono state testate due sospensioni di FORSU pretrattate, destinate a due impianti di digestione anaerobica (uno wet e uno semi-dry), mediante delle prove di biometanazione in combinazione con diversi additivi. Le co-digestioni di queste FORSU sono state esaminate con quattro tipologie di rifiuti organici provenienti da trattamenti di fanghi di depurazione, quali: fanghi disidratati provenienti da impianti di trattamento delle acque reflue urbane; biochar derivato dalla pirolisi dei fanghi; hydrochar e liquido HTC provenienti dalla carbonizzazione idrotermale dei fanghi. In particolare, i fanghi disidratati e il liquido HTC, essendo caratterizzati da un elevato contenuto d’acqua, sono stati testati con un rapporto di 1.0:2.3 rispetto alla FORSU; invece biochar e hydrochar, essendo solidi carboniosi, sono stati trattati come additivi solidi, inserendoli in co-digestione con la FORSU in concentrazione di 13 g/LFORSU. Le prove di digestione anaerobica in batch sono state condotte per valutare la co-digestione con i quattro additivi sia per la FORSU proveniente dall’impianto wet (Scenario A) sia per quella proveniente dall’impianto semi-dry (Scenario B). La mono-digestione di ognuna delle due matrici rappresenta il punto di partenza e viene utilizzata come confronto per i rispettivi quattro scenari di co-digestione, in modo tale da determinare le variazioni di efficienza del processo in termini di volume di metano prodotto. Questi test avevano l’obiettivo di determinare il potenziale biochimico di metanizzazione (BMP) di nuove miscele di substrati per valutare l’efficacia di diversi scenari impiantistici industriali che, in un’ottica di bioraffineria, combinano soluzioni tecnologiche integrate per migliorare l’efficienza del processo, ottenere rese di metano più elevate nonchè ricavare dal digestato dei prodotti, dall’alto valore aggiunto, adatti per applicazioni agricole e industriali. I risultati hanno rivelato che l’additivo che ha determinato il maggior incremento della produzione di metano in co-digestione con la FORSU è stato il liquido HTC. L’hydrochar e il biochar, entrambi aggiunti in concentrazione di 13 g/LFORSU, hanno dimostrato un effetto sinergico tra loro comparabile, producendo una quantità di metano maggiore rispetto a quanto generato dalla mono-digestione delle singole matrici. Al contrario, per i fanghi disidratati, il rapporto di co-digestione utilizzato di 1.0:2.3 (additivo:FORSU) non ha mostrato un vantaggio significativo in termini di produzione di metano, con una variazione inferiore al 10%, insufficiente per confermare un effetto sinergico di questi materiali. Per gli scenari analizzati sono stati ipotizzati dei layout impiantistici innovativi che consentano l’uso combinato di substrati differenti e tecnologie complementari collegate tra loro. L’obiettivo è creare un hub centralizzato per il trattamento dei rifiuti organici, dove i residui di un processo possano essere riutilizzati per migliorare l’efficienza di un altro. Affrontando sfide strategiche come l’ottimizzazione della gestione dei rifiuti organici e identificando soluzioni scalabili, questo lavoro contribuisce allo sviluppo di strategie innovative per il trattamento dei rifiuti. I risultati sottolineano il ruolo cruciale delle bioraffinerie nella trasformazione dei rifiuti organici in prodotti ad alto valore aggiunto, allineando obiettivi ambientali ed economici. Trasformare gli impianti di trattamento dei rifiuti in bioraffinerie capaci di trattare rifiuti provenienti da settori diversi rappresenta un’opportunità che, nel quadro di un’economia circolare, non bisogna lasciarsi sfuggire.
Organic waste biorefinery: implementation of combined treatments to enhance anaerobic digestion
Giuliano, Annamaria
2025
Abstract
The growing energy demand, rising greenhouse gas emissions, and dwindling fossil fuel reserves call for solutions to mitigate climate change using renewable energy sources. In this scenario, bio-waste is emerging as an alternative renewable source that is fundamental to meet the population′s current and future energy needs. Organic waste, such as sewage sludge, livestock manure, residues from the agri-food industry, and the organic fraction of municipal solid waste (OFMSW), has historically been regarded as a challenging waste stream, but now the perception is changing as these materials present significant opportunities for resource recovery. By leveraging advanced treatment technologies, organic waste can be utilized to generate renewable energy, and produce by-products that replenish essential nutrients in soils also resulting in minimize landfilling. Transforming traditional waste treatment facilities based on anaerobic digestion (AD) into biorefineries represents a crucial opportunity in the framework of a circular economy. This study highlights the potential of using combined technologies to optimize AD process and underlines how useful the joint processes of multiple organic matrices can be to increase material valorization. For the scope, two different pre-treated OFMSW suspensions collected from two anaerobic digestion plants, wet and semi-dry, were tested through biomethanation tests in combination with several additives. Co-digestions of OFMSW were tested with 4 organic waste from sewage sludge treatments, such as: dewatered sludge coming out of the sewage treatment plant; biochar from sludge pyrolysis; hydrochar and liquid HTC from the hydrothermal carbonization of sludge. Specifically, dewatered sludge and HTC liquid as they are characterized by high water content, were tested in a ratio of 1.0:2.3 to OFMSW; while biochar and hydrochar being carbonaceous solids were treated as solid additives by loading them in a concentration of 13 g/L to the amount of OFMSW. Anaerobic digestion batch tests were conducted to evaluate co-digestion with four additives for both OFMSW from the wet plant (Scenario A) and the semi-dry plant (Scenario B). Mono-digestion of each OFMSW represents the baseline and was compared with its four co-digestion scenarios to assess variations in process efficiency based on methane production volume. These tests were aimed at determining the BMP (Biochemical Methane Potential) of new substrates mixtures to evaluate the effectiveness of different industrial plant scenarios that, from the perspective of biorefinery, put multiple integrated technological solutions in series to improve process efficiency and achieve higher methane yields as well as digestate-derived products suitable for agricultural and industrial applications. The results revealed that the additive yielding the highest increase in methane production during co-digestion with OFMSW is the HTC liquid. Meanwhile, hydrochar and biochar, both added at a concentration of 13 g/LOFMSW, demonstrated a comparable synergistic effect, resulting in higher methane production during co-digestion than through the mono-digestion of each material. In contrast, for dewatered sludge, the co-digestion ratio of 1.0:2.3 (additive:OFMSW) did not show a significant advantage in terms of methane production; it was below 10%, which is insufficient to confirm a synergistic effect from these materials. For the investigated scenarios, some innovative layouts were proposed to enable the combined use of different substrates and different technologies arranged in series. The aim is to create a centralized hub for organic waste treatment, where residues from one process can be repurposed to enhance the efficiency of another. By addressing key challenges, such as the optimization of organic waste management and identifying scalable solutions, this work contributes to the advancement of innovative waste treatment strategies. The findings emphasize that biorefineries play a central role in converting organic waste into high-value outputs, aligning environmental and economic objectives. Transforming waste treatment facilities into biorefineries capable of processing waste from multiple sectors is an opportunity that, within the framework of a circular economy, should not be missed.File | Dimensione | Formato | |
---|---|---|---|
37 ciclo-GIULIANO Annamaria.pdf
accesso aperto
Dimensione
7.11 MB
Formato
Adobe PDF
|
7.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196336
URN:NBN:IT:POLIBA-196336