As of now intrahepatic transplantation represents the clinical gold standard for islet infusion, but it faces significant limitations, including: 1) the lack of immediate extracellular matrix (ECM) support, rapid vascularization, and adequate oxygen and nutrient supply; 2) inflammation at the transplant site leading to the 50%-75% of islet loss after infusion and 3) the shortage of organ donor. To address the shortage of human islets for large-scale T1D treatment, iPSC-derived β cells represent a promising alternative source showing a wide range potential in treating T1D in preclinical models with a substantial limitation in engraftment and immediate function upon implantation. Recent advances in pancreas bioengineering suggest that an ideal therapeutic device should regenerate a functional endocrine microenvironment in vitro, allowing β cells to sustain their endocrine function. Our lab has shown that endocrine cells exhibit improved function in vitro when organized in a vascularized three- dimensional ECM structure, which facilitates nutrient distribution and insulin response to glucose stimuli. Moreover, recent progress in generation of human islet and stem cell like islet spheroids, have shown that islet dissociation and cell reaggregation into a defined spheroids architecture, with supportive of cells as ECs and MSCs, can further enhance endocrine function and reduce the risk of graft rejection. Herein, we aim to bioengineer a vascularized endocrine device composed by i) organ like ECM, ii) human endothelial cells and iii) vascularized endocrine spheroids, based on human islet or iPSC-derived β cells, to cure T1D. To explore this, we developed two technologies to assess whether the biochemical cues or architecture of the organ ECM impacts the device's performance. We hypothesized that ECM from two different organs (i.e. amniotic membrane and lung) might influence the outcome differently due to their distinct features. The amniotic membrane, although not structurally similar to the pancreas's endocrine tissue, is already widely used in clinical settings and is known for its antifibrotic, anti-inflammatory, and immunomodulatory properties. We create a self-assembly hydrogel-based device incorporating ECM cues from the amniotic membrane, de-structuring its architecture. In contrast, the lung offers a dual-compartment well defined structure that mirrors the vascular and endocrine niches of the pancreas, making it potentially well-suited for bioengineering an endocrine pancreas. In both approaches the self- assembly or 3D structured ECM devices were repopulated with human vascularized spheroids, endothelial cells to evaluate both in vitro and in vivo how these components influence endocrine function in the presence or absence of defined architectural features.
Il trapianto intraepatico di isole pancreatiche rappresenta lo standard clinico per il trattamento del diabete di tipo1. Tuttavia, la procedura presenta significative limitazioni, tra cui: 1) la mancanza di supporto immediato dalla matrice extracellulare (ECM), una rapida vascolarizzazione, un adeguato apporto di ossigeno e nutrienti; 2) infiammazione nel sito del trapianto, correlati ad una perdita massiva di isole dopo l'infusione e 3) la carenza di donatori di organi. Per affrontare la carenza di isole umane per il trattamento su larga scala del diabete di tipo 1 (T1D), le cellule β derivate da iPSC rappresentano una promettente fonte alternativa, mostrando un ampio potenziale nel trattamento del T1D in modelli preclinici, con una limitazione sostanziale nell'innesto e nella funzione immediata dopo l'impianto. I recenti progressi nella bioingegneria del pancreas suggeriscono che un dispositivo terapeutico ideale dovrebbe rigenerare un microambiente endocrino funzionale in vitro, permettendo alle cellule β di sostenere la loro funzione endocrina. Il nostro laboratorio ha dimostrato che le cellule endocrine se organizzate in una struttura ECM tridimensionale vascolarizzata, che facilita la distribuzione dei nutrienti e la produzione di insulina in vitro ed in vivo. Inoltre, i recenti progressi nella generazione di sferoidi da isole umane e beta cellule derivanti da staminali hanno mostrato che la dissociazione delle isole e la riaggregazione cellulare in un'architettura definita, con il supporto di cellule come EC e MSC, può ulteriormente migliorare la funzione endocrina e ridurre il rischio di rigetto del trapianto. In questo contesto, il nostro obiettivo è bio-ingegnerizzare un dispositivo endocrino vascolarizzato composto da i) ECM derivante un organo, ii) cellule endoteliali umane e iii) sfere endocrine vascolarizzate, basate su isole umane o cellule β derivate da iPSC, per curare il T1D. Abbiamo sviluppato due tecnologie per valutare se gli stimoli biochimici o l'architettura dell'ECM dell'organo influenzano le performance del dispositivo. Abbiamo ipotizzato che l'ECM proveniente da due organi diversi (cioè la membrana amniotica e il polmone) possa influenzare il risultato in modo diverso, a causa delle caratteristiche distinte dell’ECM. La membrana amniotica, pur non essendo strutturalmente simile al tessuto endocrino del pancreas, è già ampiamente utilizzata in contesti clinici ed è conosciuta per le sue proprietà anti-fibrotiche, anti-infiammatorie e immuno-modulatorie. Da questa abbiamo creato un idrogel auto assemblante che incorpora gli stimoli dell’ECM dalla membrana amniotica, de-strutturandone l'architettura. Al contrario, il polmone offre una struttura ben definita a doppio compartimento che riflette la nicchia vascolare ed endocrini del pancreas, rendendolo potenzialmente adatto per la bioingegneria di un pancreas endocrino. In entrambi gli approcci, l’ECM è stata ripopolata con sferodi umani vascolarizzate, cellule endoteliali, per valutare sia in vitro che in vivo come questi componenti influenzino la funzione endocrina in presenza o assenza di architetture definite.
Vanguard: generazione di un pancreas artificial per il trattamento del diabete di tipo 1
CAMPO, FRANCESCO
2025
Abstract
As of now intrahepatic transplantation represents the clinical gold standard for islet infusion, but it faces significant limitations, including: 1) the lack of immediate extracellular matrix (ECM) support, rapid vascularization, and adequate oxygen and nutrient supply; 2) inflammation at the transplant site leading to the 50%-75% of islet loss after infusion and 3) the shortage of organ donor. To address the shortage of human islets for large-scale T1D treatment, iPSC-derived β cells represent a promising alternative source showing a wide range potential in treating T1D in preclinical models with a substantial limitation in engraftment and immediate function upon implantation. Recent advances in pancreas bioengineering suggest that an ideal therapeutic device should regenerate a functional endocrine microenvironment in vitro, allowing β cells to sustain their endocrine function. Our lab has shown that endocrine cells exhibit improved function in vitro when organized in a vascularized three- dimensional ECM structure, which facilitates nutrient distribution and insulin response to glucose stimuli. Moreover, recent progress in generation of human islet and stem cell like islet spheroids, have shown that islet dissociation and cell reaggregation into a defined spheroids architecture, with supportive of cells as ECs and MSCs, can further enhance endocrine function and reduce the risk of graft rejection. Herein, we aim to bioengineer a vascularized endocrine device composed by i) organ like ECM, ii) human endothelial cells and iii) vascularized endocrine spheroids, based on human islet or iPSC-derived β cells, to cure T1D. To explore this, we developed two technologies to assess whether the biochemical cues or architecture of the organ ECM impacts the device's performance. We hypothesized that ECM from two different organs (i.e. amniotic membrane and lung) might influence the outcome differently due to their distinct features. The amniotic membrane, although not structurally similar to the pancreas's endocrine tissue, is already widely used in clinical settings and is known for its antifibrotic, anti-inflammatory, and immunomodulatory properties. We create a self-assembly hydrogel-based device incorporating ECM cues from the amniotic membrane, de-structuring its architecture. In contrast, the lung offers a dual-compartment well defined structure that mirrors the vascular and endocrine niches of the pancreas, making it potentially well-suited for bioengineering an endocrine pancreas. In both approaches the self- assembly or 3D structured ECM devices were repopulated with human vascularized spheroids, endothelial cells to evaluate both in vitro and in vivo how these components influence endocrine function in the presence or absence of defined architectural features.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_FINAL ALL_VANGUARD.pdf
embargo fino al 14/01/2026
Dimensione
29.48 MB
Formato
Adobe PDF
|
29.48 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196357
URN:NBN:IT:UNISR-196357