Bacterial toxin-antitoxin (TA) systems are widely distributed in the genomes of bacteria and archaea, they regulate cell growth and death in response to environmental conditions, they consist of a structurally stable toxin, which has toxic effects on the same cell that synthesized it, and by an antitoxin which counteracts its toxicity as long as the environmental conditions are favorable for growth, the relative genes are part of the same operon and they can be localized on the chromosomal DNA or on the plasmid DNA. The antitoxin is unstable, it is degraded when the conditions are hostile, resulting in the overcoming of toxin’s toxicity, which interferes with essential cellular processes, such as DNA replication or protein synthesis, resulting in a metabolic slowdown that can favor convergence of cellular resources towards survival. Eight types of TA systems have been identified, they are classified based on the nature of the components (proteins or RNA) and the mechanism by which the antitoxin counteracts the toxin’s toxicity, among these the most abundant belong to type II, in which both the toxin and the antitoxin are proteins. This study conducted the functional characterization of the DinJ-YafQ type II TA system in L. paracasei 4366, belonging to the L. casei group, in which a bioinformatics analysis found this system to be the most abundant and a study on the expression of this system in the species in question revealed that it is involved in the growth slowdown in response to high temperature stress, through a ribonuclease activity. The homologous system in Escherichia coli has been characterized and the homology analysis has provided clues on the functioning of the system object of this study: the antitoxin DinJ, in addition to neutralizing the toxicity of YafQ through the formation of a stable complex, acts as a transcriptional repressor of its own operon, so small quantities of the two proteins are synthesized, and the degradation of the antitoxin in response to unfavorable conditions leads to the derepression of the system and the absence of neutralization of the toxin determines its toxicity windward. In vitro assays of the ribonuclease activity of YafQ confirmed its activity. A variant of YafQ has been identified in strain 2333 of L. paracasei, in which an Asp residue, predicted to have a catalytic role based on alignment with the characterized homologous sequence of E. coli, is replaced by a Gly (D72G), so its RNase activity was tested in vitro and revealed a cleavage efficiency reduction, confirming the catalytic role of D72. The study of DinJ-mediated transcriptional repression was conducted by EMSA (Electrophoretic Mobility Shift Assay) using a DNA fragment containing the dinJ-yafQ promoter predicted to contain the DinJ binding site: the protein binds both as a DinJ-DinJ homodimer and (DinJ)2-(YafQ)2 heterotetramer, with cooperativity, a palindromic sequence overlapping the -35 promoter element of its own operon; the densitometric analysis and the fitting of the data obtained from the EMSA (fraction of bound DNA as a function of the protein concentration) allowed to obtain the KD value for DinJ (60 nM), DinJ-YafQ_pa4366 (44 nM) and DinJ-YafQ_pa2333 (79 nM). The binding of the complex is mediated by DinJ, indeed an EMSA with YafQ showed that the toxin does not bind DNA. A mutagenesis study revealed the importance of the R13 residue of DinJ in the interaction with DNA: the R13A substitution resulted in the loss of DNA binding ability of DinJ. Competitive EMSA with RNA polymerase showed that DinJ acts as a transcriptional repressor by blocking RNA polymerase access to the promoter in a specific way. A mutagenesis study demonstrated the importance of both hemisites of the palindromic sequence in the binding of DinJ: the removal of one of the two hemisites resulted in the reduction of the affinity of the antitoxin for its promoter, as revealed by an EMSA with the mutated sequence. DinJ-mediated transcriptional repression was studied in vivo using gfp as a reporter gene, in a recombinant system in which the ORF of the fluorescent protein was fused downstream of the dinJ-yafQ promoter and the fluorescence intensity was quantified following the expression of DinJ, both wild type and the mutated form R13A, in the absence and in the presence of YafQ: it has been confirmed that DinJ and the DinJ-YafQ complex repress the expression of its own operon; it was found that DinJ R13A has in vivo a low transcriptional repressor activity and that it is accentuated by the interaction with YafQ. By atomic force microscopy (AFM) it was possible to observe the specific binding of DinJ-YafQ to its promoter, it was possible to measure the position of the nucleoprotein complexes on the DNA and it confirmed their prevalent position at the palindromic sequence overlapping the –35 element of the dinJ-yafQ promoter which was predicted to be the DinJ binding site. The oligomeric states of DinJ, YafQ and DinJ-YafQ were studied by crosslinking experiments with glutaraldehyde and size exclusion chromatography and the acquired informations were integrated with the obtained by AFM ones: crosslinking and size exclusion chromatography showed that DinJ in solution forms homodimers, YafQ is present in monomeric form, the DinJ-YafQ complex instead, from the crosslinking analysis, reveals the formation of dimers (attributable to (DinJ)2 homodimers), trimers ((DinJ)2-YafQ) and tetramers ((DinJ)2-(YafQ)2), while size exclusion chromatography revealed the formation of the heterotetrameric complex in a concentration-dependent manner, that is at higher protein concentrations the heterotetrameric form prevails, at lower concentrations it dissociates into the DinJ-DinJ dimer and YafQ monomers, instead AFM revealed that, in the presence of its own promoter, the DinJ-YafQ complex forms higher order oligomeric states, not found in crosslinking experiments, in fact each tetramer can bind one hemisite of the palindromic sequence, the promoter structure is compatible with the simultaneous binding of both tetramers, as supported by a structural model created for the L. paracasei DinJ-YafQ system, moreover AFM revealed oligomeric forms greater than 2 tetramers, confirming the cooperativity of the binding of DinJ and DinJ-YafQ to their promoter.
I sistemi tossina-antitossina (TA) batterici sono ampiamente distribuiti nei genomi dei batteri e degli archaea, regolano la crescita e la morte cellulare in risposta alle condizioni ambientali, sono costituiti da una tossina strutturalmente stabile, che ha effetti tossici sulla stessa cellula che l’ha sintetizzata, e da un’antitossina che ne contrasta la tossicità finchè le condizioni ambientali sono favorevoli alla crescita, i relativi geni fanno parte dello stesso operone e possono essere localizzati sul DNA cromosomico oppure sul DNA plasmidico. L’antitossina è instabile, viene degradata quando le condizioni sono ostili, con il conseguente sopravvento della tossicità della tossina, che interferisce con processi cellulari essenziali, quali la replicazione del DNA o la sintesi di proteine, determinando un rallentamento metabolico che può favorire la convergenza delle risorse cellulari verso la sopravvivenza. Sono stati identificati 8 tipi di sistemi TA, classificati sulla base della natura delle componenti (proteine o RNA) e del meccanismo con cui l’antitossina contrasta la tossicità della tossina, tra questi i più abbondanti appartengono al tipo II, in cui sia la tossina che l’antitossina sono proteine. Questo studio ha condotto la caratterizzazione funzionale del sistema TA di tipo II DinJ-YafQ nella specie L. paracasei 4366, appartenente al gruppo L. casei, nei quali un’analisi bioinformatica ha rilevato che questo sistema è il più abbondante e uno studio sull’espressione di questo sistema nelle specie in questione ha rivelato che è coinvolto nel rallentamento della crescita in risposta allo stress da alte temperature, mediato da un’attività ribonucleasica. Il sistema omologo in Escherichia coli è stato caratterizzato e l’analisi di omologia ha fornito indizi sul funzionamento del sistema oggetto di questo studio: l’antitossina DinJ, oltre a neutralizzare la tossicità di YafQ attraverso la formazione di un complesso stabile, agisce da repressore trascrizionale del proprio operone, per cui sono sintetizzate scarse quantità delle due proteine, e la degradazione dell’antitossina in risposta alle condizioni sfavorevoli comporta la derepressione del sistema e l’assenza della neutralizzazione della tossina ne determina il sopravvento della tossicità. Sono stati condotti saggi in vitro dell’attività ribonucleasica di YafQ, che ne hanno confermato l’attività. E’ stata identificata una variante di YafQ nel ceppo 2333 di L. paracasei, in cui un residuo di Asp, predetto di avere un ruolo catalitico in base all’allineamento con la sequenza omologa caratterizzata di E. coli, è sostituito da una Gly (D72G), quindi la sua attività RNAsica è stata testata in vitro e ha rivelato una riduzione dell’efficienza di taglio, confermando il ruolo catalitico di D72. Lo studio della repressione trascrizionale per azione di DinJ è stato condotto mediante EMSA (Electrophoretic Mobility Shift Assay) utilizzando un frammento di DNA contenene il promotore di dinJ-yafQ predetto di contenere il sito di legame di DinJ: la proteina lega sia come omodimero DinJ-DinJ che eterotetramero (DinJ)2-(YafQ)2, con cooperatività, una sequenza palindromica sovrapposta all’elemento –35 del promotore del proprio operone; l’analisi densitometrica e il fitting dei dati ottenuti dagli EMSA (frazione di DNA legato in funzione della concentrazione della proteina) ha permesso di ricavare il valore della KD per DinJ (60 nM), DinJ-YafQ_pa4366 (44 nM) e DinJ-YafQ_pa2333 (79 nM). Il legame del complesso è mediato da DinJ, infatti un EMSA con YafQ ha mostrato che la tossina non lega il DNA. Uno studio di mutagenesi ha rivelato l’importanza del residuo R13 di DinJ nell’interazione con il DNA: la sostituzione R13A ha determinato la perdita della capacità di DinJ di legare il proprio promotore. Un EMSA di competizione con la RNA polimerasi ha mostrato che DinJ agisce da repressore trascrizionale bloccando l’accesso dell’RNA pol al proprio promotore in modo specifico. Uno studio di mutagenesi ha dimostrato l’importanza di entrambi gli emisiti della sequenza palindromica nel legame di DinJ: la rimozione di uno dei due emisiti comporta la riduzione dell’affinità dell’antitossina per il proprio promotore, come rivelato da un EMSA con la sequenza mutata. La repressione trascrizionale mediata da DinJ è stata studiata in vivo utilizzando come gene reporter la gfp, in un sistema ricombinante in cui la ORF della proteina fluorescente è stata fusa a valle del promotore di dinJ-yafQ e l’intensità della fluorescenza è stata quantificata in seguito all’espressione di DinJ, sia wild type sia la forma mutata R13A, in assenza e in presenza di YafQ: è stato confermato che DinJ e il complesso DinJ-YafQ reprimono l’espressione del proprio operone; è risultato che DinJ R13A in vivo presenta una scarsa attività di repressore trascrizionale e che questa viene accentuata dall’interazione con YafQ. Mediante microscopia a forza atomica (AFM) è stato possibile osservare il legame specifico di DinJ-YafQ al proprio promotore, è stato possibile misurare la posizione dei complessi nucleoproteici sul DNA e confermare che si formano prevalentemente in corrispondenza della sequenza palindromica sovrapposta all’elemento -35 del promotore di dinJ-yafQ che era stata predetta essere il sito di legame di DinJ. Sono stati studiati gli stati oligomerici di DinJ, YafQ e DinJ-YafQ mediante esperimenti di crosslinking con glutaraldeide e cromatografia ad esclusione dimensionale e le informazioni acquisite sono state integrate con quelle ottenute mediante AFM: dal crosslinking e dalla cromatografia ad esclusione dimensionale risulta che DinJ in soluzione forma omodimeri, YafQ si presenta in forma monomerica, il complesso DinJ-YafQ invece, dall’analisi del crosslinking, rivela la formazione di dimeri (attribuibili a omodimeri (DinJ)2), trimeri ((DinJ)2-YafQ) e tetrameri ((DinJ)2-(YafQ)2), mentre la cromatografia ad esclusione dimensionale ha rivelato una dipendenza dalla concentrazione della capacità del complesso DinJ-YafQ di formare oligomeri, ossia a concentrazioni maggiori prevale la forma eterotetramerica, a minori concentrazioni si dissocia nel dimero DinJ-DinJ e monomeri di YafQ, invece la microscopia a forza atomica ha rivelato che, in presenza del proprio promotore, il complesso DinJ-YafQ è in grado di dare luogo a forme oligomeriche superiori, non rilevate mediante gli esperimenti di crosslinking, questo perchè ciascun tetramero lega un emisito della sequenza palindromica, e la struttura del promotore è compatibile con il simultaneo legame di entrambi i tetrameri, come supportato da un modello strutturale creato per il sistema DinJ-YafQ di L. paracasei, inoltre mediante AFM sono state individuate anche forme oligomeriche superiori a 2 tetrameri, confermando la cooperatività del legame di DinJ e DinJ-YafQ al proprio promotore.
Caratterizzazione funzionale del sistema tossina-antitossina di tipo II DinJ-YafQ in Lactobacillus paracasei: la regolazione della crescita batterica come risposta adattativa allo stress
Aleksandra Anna, Bonini
2023
Abstract
Bacterial toxin-antitoxin (TA) systems are widely distributed in the genomes of bacteria and archaea, they regulate cell growth and death in response to environmental conditions, they consist of a structurally stable toxin, which has toxic effects on the same cell that synthesized it, and by an antitoxin which counteracts its toxicity as long as the environmental conditions are favorable for growth, the relative genes are part of the same operon and they can be localized on the chromosomal DNA or on the plasmid DNA. The antitoxin is unstable, it is degraded when the conditions are hostile, resulting in the overcoming of toxin’s toxicity, which interferes with essential cellular processes, such as DNA replication or protein synthesis, resulting in a metabolic slowdown that can favor convergence of cellular resources towards survival. Eight types of TA systems have been identified, they are classified based on the nature of the components (proteins or RNA) and the mechanism by which the antitoxin counteracts the toxin’s toxicity, among these the most abundant belong to type II, in which both the toxin and the antitoxin are proteins. This study conducted the functional characterization of the DinJ-YafQ type II TA system in L. paracasei 4366, belonging to the L. casei group, in which a bioinformatics analysis found this system to be the most abundant and a study on the expression of this system in the species in question revealed that it is involved in the growth slowdown in response to high temperature stress, through a ribonuclease activity. The homologous system in Escherichia coli has been characterized and the homology analysis has provided clues on the functioning of the system object of this study: the antitoxin DinJ, in addition to neutralizing the toxicity of YafQ through the formation of a stable complex, acts as a transcriptional repressor of its own operon, so small quantities of the two proteins are synthesized, and the degradation of the antitoxin in response to unfavorable conditions leads to the derepression of the system and the absence of neutralization of the toxin determines its toxicity windward. In vitro assays of the ribonuclease activity of YafQ confirmed its activity. A variant of YafQ has been identified in strain 2333 of L. paracasei, in which an Asp residue, predicted to have a catalytic role based on alignment with the characterized homologous sequence of E. coli, is replaced by a Gly (D72G), so its RNase activity was tested in vitro and revealed a cleavage efficiency reduction, confirming the catalytic role of D72. The study of DinJ-mediated transcriptional repression was conducted by EMSA (Electrophoretic Mobility Shift Assay) using a DNA fragment containing the dinJ-yafQ promoter predicted to contain the DinJ binding site: the protein binds both as a DinJ-DinJ homodimer and (DinJ)2-(YafQ)2 heterotetramer, with cooperativity, a palindromic sequence overlapping the -35 promoter element of its own operon; the densitometric analysis and the fitting of the data obtained from the EMSA (fraction of bound DNA as a function of the protein concentration) allowed to obtain the KD value for DinJ (60 nM), DinJ-YafQ_pa4366 (44 nM) and DinJ-YafQ_pa2333 (79 nM). The binding of the complex is mediated by DinJ, indeed an EMSA with YafQ showed that the toxin does not bind DNA. A mutagenesis study revealed the importance of the R13 residue of DinJ in the interaction with DNA: the R13A substitution resulted in the loss of DNA binding ability of DinJ. Competitive EMSA with RNA polymerase showed that DinJ acts as a transcriptional repressor by blocking RNA polymerase access to the promoter in a specific way. A mutagenesis study demonstrated the importance of both hemisites of the palindromic sequence in the binding of DinJ: the removal of one of the two hemisites resulted in the reduction of the affinity of the antitoxin for its promoter, as revealed by an EMSA with the mutated sequence. DinJ-mediated transcriptional repression was studied in vivo using gfp as a reporter gene, in a recombinant system in which the ORF of the fluorescent protein was fused downstream of the dinJ-yafQ promoter and the fluorescence intensity was quantified following the expression of DinJ, both wild type and the mutated form R13A, in the absence and in the presence of YafQ: it has been confirmed that DinJ and the DinJ-YafQ complex repress the expression of its own operon; it was found that DinJ R13A has in vivo a low transcriptional repressor activity and that it is accentuated by the interaction with YafQ. By atomic force microscopy (AFM) it was possible to observe the specific binding of DinJ-YafQ to its promoter, it was possible to measure the position of the nucleoprotein complexes on the DNA and it confirmed their prevalent position at the palindromic sequence overlapping the –35 element of the dinJ-yafQ promoter which was predicted to be the DinJ binding site. The oligomeric states of DinJ, YafQ and DinJ-YafQ were studied by crosslinking experiments with glutaraldehyde and size exclusion chromatography and the acquired informations were integrated with the obtained by AFM ones: crosslinking and size exclusion chromatography showed that DinJ in solution forms homodimers, YafQ is present in monomeric form, the DinJ-YafQ complex instead, from the crosslinking analysis, reveals the formation of dimers (attributable to (DinJ)2 homodimers), trimers ((DinJ)2-YafQ) and tetramers ((DinJ)2-(YafQ)2), while size exclusion chromatography revealed the formation of the heterotetrameric complex in a concentration-dependent manner, that is at higher protein concentrations the heterotetrameric form prevails, at lower concentrations it dissociates into the DinJ-DinJ dimer and YafQ monomers, instead AFM revealed that, in the presence of its own promoter, the DinJ-YafQ complex forms higher order oligomeric states, not found in crosslinking experiments, in fact each tetramer can bind one hemisite of the palindromic sequence, the promoter structure is compatible with the simultaneous binding of both tetramers, as supported by a structural model created for the L. paracasei DinJ-YafQ system, moreover AFM revealed oligomeric forms greater than 2 tetramers, confirming the cooperativity of the binding of DinJ and DinJ-YafQ to their promoter.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottorato_Aleksandra Anna Bonini.pdf
accesso aperto
Dimensione
5.49 MB
Formato
Adobe PDF
|
5.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196705
URN:NBN:IT:UNIPR-196705