DNA-Encoded Libraries (DELs) are large collections of small organic molecules individually and covalently linked to DNA tags. Library construction proceeds in a combinatorial fashion, thus generating libraries with millions to billions of different members. Each library member is encoded with a unique DNA tag that facilitates the screening of libraries as a pool of compounds using affinity capture procedures. An additional advantage derived from the covalent bond of molecules with oligonucleotides is the selective amplification by polymerase chain reaction (PCR) of DNA tags corresponding only to potential binders that are therefore read by high-throughput DNA sequencing. In chapter 5 of this thesis, I present a study in which we established a correlation between DEL input (copies per library member used in DEL screening campaigns) and the hit discovery rate in DEL selections. A minimum number of copies for each library member was identified as necessary to collect meaningful screening results. Parallel screening of different libraries, with inputs ranging from 100 copies to 10 million copies, against a panel of pharmaceutically relevant targets revealed that a threshold of approximately 10^5 copies per compound is needed to confidently identify potent ligands and have reproducible fingerprints. Chapter 6 describes the successful isolation of highly potent inhibitors of Fibroblast Activation Protein alpha (FAP), a tumor-associated antigen, through DEL-affinity maturation strategies. The construction of affinity-matured DNA-encoded chemical libraries enabled the identification of picomolar FAP inhibitors with an enhanced affinity of about 10^4-fold in comparison to the hit used for library construction. In particular, the 177Lu-DOTAGA conjugate of OncoFAP-11, our most potent monovalent FAP inhibitor, showed excellent quantitative biodistribution profiles in tumor-bearing mice, with prolonged tumor residence time after intravenous administration. The synthesis of a dimeric derivative (BiOncoFAP-11, also labeled with radioactive 177 lutetium) further enhanced uptake and residence time at the site of disease. Chapter 7 describes a novel permutational encoding approach that involves oligonucleotides of the same molecular weight and polarity designed by base shuffling. This methodology was implemented to encode stereoisomers and positional isomers. Our encoding strategy enhanced hits’ enrichment factors compared to earlier selection experiments conducted with DELs in which scaffolds’ stereochemistry was not encoded. In chapter 8, I describe the synthesis of SP-DEL, a single-stranded DEL consisting of three sets of building blocks and based on a cyclic tetrapeptide scaffold with four stereocenters and comprising sixteen (2^4) different stereoisomers. The permutational encoding approach developed and described in chapter 7 was employed to encode the stereochemical diversity of the macrocyclic SP-DEL scaffolds. The final library will be screened against antigens of pharmaceutical interest for de novo ligand discovery purposes. Collectively, this thesis presents advancements in DEL technology aimed at identifying the library input (copies per library member) that is needed in affinity-capture selections (i.e., a minimum threshold of 10^5 is required for clear selection outputs; chapter 5) and at developing new strategies to encode the scaffold stereochemistry with small oligonucleotide codes compatible with split and pool DEL synthetic methods (chapter 7). Affinity maturation DELs are presented as a potent tool to improve the affinity of known hit compounds since they led to the discovery of picomolar inhibitors for FAP with possible application in targeted radiotherapy (chapter 6). SP-DEL, a novel three-building block-cyclic peptide-based DEL, was designed, and the first synthetic steps were performed (chapter 8). The library is under construction and will be used in de novo ligand discovery campaigns.
Le DEL (DNA-Encoded Libraries) sono collezioni di piccole molecole organiche legate covalentemente a tag di DNA unici. La costruzione avviene in modo combinatorio, generando librerie con milioni o miliardi di membri. Ogni molecola è codificata con un tag specifico, semplificando lo screening tramite procedure di cattura per affinità. Il legame covalente consente anche l'amplificazione selettiva dei tag corrispondenti ai potenziali leganti attraverso la PCR, seguita dal sequenziamento ad alta velocità. Nel capitolo 5, abbiamo correlato l'input di una DEL (copie per membro) con il tasso di scoperta di hit nelle selezioni. È stato individuato un numero minimo di copie necessario per risultati significativi. Lo screening parallelo di librerie con input da 100 a 10 milioni di copie contro bersagli farmacologici ha mostrato che circa 10^5 copie per composto sono necessarie per identificare ligandi potenti e riproducibili. Il capitolo 6 riporta l'isolamento di inibitori altamente potenti della proteina Fibroblast Activation Protein alpha (FAP), antigene associato ai tumori, tramite strategie di maturazione di affinità DEL. Librerie chimiche codificate con DNA hanno prodotto inibitori picomolari con affinità migliorata di circa 10^4 volte rispetto all’hit iniziale. Il coniugato radioattivo 177Lu-DOTAGA di OncoFAP-11, il nostro inibitore più potente, ha dimostrato eccellente biodistribuzione e lunga permanenza tumorale nei topi. Inoltre, un derivato dimerico (BiOncoFAP-11) marcato con 177Lu ha ulteriormente aumentato l’assorbimento e la durata al sito della malattia. Il capitolo 7 introduce una nuova codifica permutazionale che utilizza oligonucleotidi dello stesso peso molecolare e polarità, progettati tramite rimescolamento delle basi, per codificare stereoisomeri e isomeri posizionali. Questa strategia ha migliorato i fattori di arricchimento rispetto alle selezioni precedenti, dove la stereochimica non era codificata. Nel capitolo 8, descrivo la sintesi di SP-DEL, una libreria a singolo filamento costituita da tre set di building blocks e basata su uno scaffold tetrapeptidico ciclico con quattro stereocentri e comprendente sedici (2^4) stereoisomeri diversi. L'approccio di codifica permutazionale sviluppato e descritto nel capitolo 7 è stato impiegato per codificare la diversa stereochimica degli scaffold macrociclici nella SP-DEL. La libreria finale sarà sottoposta a screening contro antigeni di interesse farmaceutico per la scoperta di nuovi ligandi. Nel complesso, questa tesi presenta progressi nella tecnologia DEL volti a identificare l'input della libreria (copie per membro della libreria) necessario nelle selezioni per affinità di cattura (ad esempio, è richiesta una soglia minima di 10^5 per ottenere risultati chiari nel processo di selezione; capitolo 5) e a sviluppare nuove strategie per codificare la stereochimica dello scaffold con piccoli codici oligonucleotidici compatibili con i metodi di sintesi DEL in split e pool (capitolo 7). Le DEL con affinità maturata sono presentati come un potente strumento per migliorare l'affinità di composti di successo noti, poiché hanno portato alla scoperta di inibitori picomolari per la FAP con possibili applicazioni nella radioterapia mirata (capitolo 6). È stata inoltre progettata una nuova libreria chiamata SP- con peptidi ciclici come scaffolds. La libreria finale presenterà tre set di building blocks, e sono state eseguite le prime fasi di sintesi (capitolo 8). La SP-DEL è in fase di costruzione e sarà utilizzata in campagne di scoperta di ligandi de novo.
Progressi nella tecnologia delle DNA-Encoded Libraries per applicazioni farmaceutiche e di terapia mirata del cancro
PUGLIOLI, SARA
2025
Abstract
DNA-Encoded Libraries (DELs) are large collections of small organic molecules individually and covalently linked to DNA tags. Library construction proceeds in a combinatorial fashion, thus generating libraries with millions to billions of different members. Each library member is encoded with a unique DNA tag that facilitates the screening of libraries as a pool of compounds using affinity capture procedures. An additional advantage derived from the covalent bond of molecules with oligonucleotides is the selective amplification by polymerase chain reaction (PCR) of DNA tags corresponding only to potential binders that are therefore read by high-throughput DNA sequencing. In chapter 5 of this thesis, I present a study in which we established a correlation between DEL input (copies per library member used in DEL screening campaigns) and the hit discovery rate in DEL selections. A minimum number of copies for each library member was identified as necessary to collect meaningful screening results. Parallel screening of different libraries, with inputs ranging from 100 copies to 10 million copies, against a panel of pharmaceutically relevant targets revealed that a threshold of approximately 10^5 copies per compound is needed to confidently identify potent ligands and have reproducible fingerprints. Chapter 6 describes the successful isolation of highly potent inhibitors of Fibroblast Activation Protein alpha (FAP), a tumor-associated antigen, through DEL-affinity maturation strategies. The construction of affinity-matured DNA-encoded chemical libraries enabled the identification of picomolar FAP inhibitors with an enhanced affinity of about 10^4-fold in comparison to the hit used for library construction. In particular, the 177Lu-DOTAGA conjugate of OncoFAP-11, our most potent monovalent FAP inhibitor, showed excellent quantitative biodistribution profiles in tumor-bearing mice, with prolonged tumor residence time after intravenous administration. The synthesis of a dimeric derivative (BiOncoFAP-11, also labeled with radioactive 177 lutetium) further enhanced uptake and residence time at the site of disease. Chapter 7 describes a novel permutational encoding approach that involves oligonucleotides of the same molecular weight and polarity designed by base shuffling. This methodology was implemented to encode stereoisomers and positional isomers. Our encoding strategy enhanced hits’ enrichment factors compared to earlier selection experiments conducted with DELs in which scaffolds’ stereochemistry was not encoded. In chapter 8, I describe the synthesis of SP-DEL, a single-stranded DEL consisting of three sets of building blocks and based on a cyclic tetrapeptide scaffold with four stereocenters and comprising sixteen (2^4) different stereoisomers. The permutational encoding approach developed and described in chapter 7 was employed to encode the stereochemical diversity of the macrocyclic SP-DEL scaffolds. The final library will be screened against antigens of pharmaceutical interest for de novo ligand discovery purposes. Collectively, this thesis presents advancements in DEL technology aimed at identifying the library input (copies per library member) that is needed in affinity-capture selections (i.e., a minimum threshold of 10^5 is required for clear selection outputs; chapter 5) and at developing new strategies to encode the scaffold stereochemistry with small oligonucleotide codes compatible with split and pool DEL synthetic methods (chapter 7). Affinity maturation DELs are presented as a potent tool to improve the affinity of known hit compounds since they led to the discovery of picomolar inhibitors for FAP with possible application in targeted radiotherapy (chapter 6). SP-DEL, a novel three-building block-cyclic peptide-based DEL, was designed, and the first synthetic steps were performed (chapter 8). The library is under construction and will be used in de novo ligand discovery campaigns.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_SP_Low_Quality.pdf
embargo fino al 12/03/2028
Dimensione
19.54 MB
Formato
Adobe PDF
|
19.54 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/197411
URN:NBN:IT:IUSSPAVIA-197411