This PhD thesis is focused on the design, synthesis, and characterization of new porous materials belonging to the classes of metal-organic frameworks (MOFs) and hyper-crosslinked polymers (HCPs). The goal was to understand the adsorption processes in depth as well as the local and global dynamics, enabling the development of new porous materials with tailored properties for gas capture, separation, and storage. Two new isoreticular Al MOFs were fabricated by choosing an aliphatic molecular rotor (denoted as FTR, Free Trigonal Rotor) and its partially fluorinated analogous as organic ligands. Hyperpolarized 129Xe NMR spectroscopy demonstrated gas accessibility and revealed a remarkable chemical shift anisotropy diagnostic of the narrow ellipsoidal channels cross-section. CO2 adsorption isotherms showed a higher affinity for the polar walls of the fluorinated MOF, with an isosteric heat of adsorption (Qst) of about 30 kJ/mol. 1H T1 NMR relaxation times collected at different temperatures revealed correlated motions within domains of reorientating dipoles with virtually negligible activation energy that were dramatically affected by CO2 adsorption, which hampered the local dynamics of the dipolar rotors. To further investigate the relationship between porous frameworks and guest molecules, a series of new isoreticular pillared Zn MOFs were developed. The structures are characterized by 2D layers comprising FTR ligands pillared in the third dimension by progressively longer bispyridine ligands to elongate the pores and enhance guest molecule uptake. The total CO2 uptake at 195 K was effectively increased from 1.7 to 4.1 mmol/g while maintaining the selectivity toward N2. The local dynamics of the ligands and the global dynamics of the frameworks were studied by variable temperature 13C CP MAS and 1H T1 NMR relaxation times, revealing a complex motion of the molecular machine that was dramatically influenced by guest-induced structural changes. New HCPs were designed with a high density of carboxylic acids directly attached to the bridging units during the synthesis, thus without post-synthetic modification. The porous polymers displayed enhanced CO2 interactions with a Qst of about 35 kJ/mol, and breakthrough analysis demonstrated the effective CO2 separation from a CO2/N2 mixture for 16 min/g by using a stream of 6 sccm. In-situ chemical transformations were performed to convert carboxylic acids into carboxylates, generating a poly-ionic polymer that was tested for hydrogen storage at 77 K. The hydrogen isotherm showed a steep increase in the adsorption at low pressures with an uptake of 3.7 mmol/g at 1 bar, indicating good gas-framework interactions, and a total uptake at 100 bar of about 6.2 mmol/g. A different synthetic procedure was used to generate a new HCP maximizing the surface area and introducing porphyrin units coordinated to cobalt ions to generate specific sites of interaction for guest molecules, like CO2 and O2. The BET surface area was about 1331 m2/g, and the Qst for CO2 at 273 K was about 30 kJ/mol. UV-Vis spectroscopy confirmed the coordination of cobalt ions to the porphyrin in the porous polymer. Finally, the active pore sites of a series of isostructural Zr hetero-ligand MOFs were investigated by Xe. The pore sizes were modulated by the insertion of the two ligands with distinct steric encumbrance. Xe gas isotherms and hyperpolarized 129Xe NMR revealed that higher confinement in the corners of the tetrahedral cavities is beneficial for the adsorption of gas molecules, increasing the interaction between gas molecules and pore walls. The Xe isosteric heat of adsorption was evaluated as high as 24.5 kJ/mol, and a perfect correlation between the Qst and Xe NMR chemical shift was found as a function of pore dimension. The Xe adsorption properties of these MOFs and fluorescent ligands were used to detect radioactive noble gases by employing MOFs as gas concentrators and scintillating materials.
Questa tesi di dottorato è focalizzata sulla progettazione, sintesi e caratterizzazione di nuovi materiali porosi appartenenti alle famiglie dei Metal-Organic Frameworks (MOF) e dei polimeri iper-reticolati (HCP). L'obiettivo è di comprendere in modo approfondito il processo di adsorbimento, nonché la dinamica locale e globale, per sviluppare nuovi materiali con proprietà specifiche per la cattura, separazione e stoccaggio di gas. Nuovi MOFs isoreticolari a base di Al sono stati fabbricati usando come leganti un rotore molecolare (noto come FTR, Free Trigonal Rotor) e il suo analogo parzialmente fluorurato. La capacità dei gas di entrare nella struttura è stata dimostrata tramite analisi NMR dello xeno iperpolarizzato, i cui spettri mostrano una notevole anisotropia, caratteristica dei canali stretti a forma ellissoidale. Isoterme di adsorbimento di CO2 hanno dimostrato una maggiore affinità nei confronti delle pareti polari del MOF fluorurato, con un calore isosterico di adsorbimento (Qst) di circa 30 kJ/mol. Misure dei tempi di rilassamento NMR a distinte temperature hanno rivelato molteplici fenomeni di riarrangimento dei leganti dovuti a moti correlati che coinvolgono l’intera struttura. Il riorientamento dei dipoli è stato intralciato dall'adsorbimento di CO2, che ne ha ridotto la dinamica collettiva. Inoltre, per approfondire la relazione tra materiali porosi e molecole ospiti, è stata studiata una serie di MOF pilastrati isoreticolari a base Zn, costituiti da strati bidimensionali contenenti leganti FTR congiunti da leganti a base di bipiridine che fungono da pilastri. Pilastri progressivamente più lunghi permettono di aumentare le dimensioni dei pori e quindi la capacità di assorbimento. L'assorbimento totale di CO2 a 195 K è stato aumentato da 1.7 a 4.1 mmol/g, mantenendo una selettività nei confronti dell'azoto. Misure NMR hanno permesso di studiare la dinamica locale e globale rivelando moti complessi che sono stati fortemente influenzati dai cambiamenti strutturali indotti dall'assorbimento delle molecole ospiti. Sono stati progettati e sintetizzati nuovi HCPs con un'alta densità di acidi carbossilici legati ai ponti che uniscono le unità monomeriche direttamente in fase di sintesi. Gli acidi carbossilici interagiscono positivamente con la CO2 e danno luogo ad un Qst di circa 35 kJ/mol. Misure di breakthrough in condizioni operative hanno dimostrato la capacità di separare la CO2 da una miscela di gas CO2/N2 per circa 16 min/g con un flusso di 6 sccm. Mediante modificazioni post-sintesi, gli acidi carbossilici sono stati trasformati in ioni carbossilati, generando un polimero polionico che è stato testato per lo stoccaggio di idrogeno a 77 K, mostrando un assorbimento totale di 6.2 mmol/g e una curva di assorbimento molto ripida ad indicare una buona interazione tra gas e matrice. È stata inoltre utilizzata una procedura sintetica differente per massimizzare l'area superficiale e introdurre contemporaneamente delle unità porfiriniche in grado di generare siti di interazione specifici per la cattura di molecole ospiti quali CO2 e O2. L'area superficiale BET è stata calcolata in 1331 m2/g, e il Qst per la CO2 a 273 K è di circa 30 kJ/mol. Infine, sono stati investigati i siti di interazione primari in una serie di MOF isostrutturali a base Zr con etero-leganti tramite xenon. Isoterme di adsorbimento di Xe a diverse temperature e misure di spettroscopia NMR dello xeno iperpolarizzato hanno dimostrato che un maggiore confinamento nelle cavità tetraedriche della struttura è benefico per l'adsorbimento di Xe ed in generale per le molecole di gas adsorbite, che esplorano interazioni più forti con le pareti del poro. Il Qst dello Xe è stato valutato a 24.5 kJ/mol e correla perfettamente con il chemical shift dello Xe in funzione delle dimensioni dei pori. I MOFs sono stati impiegati nella rilevazione di gas nobili radioattivi anche a concentrazioni estremamente basse.
CO2 and H2 Capture and Storage by Porous Materials for Carbon-Free Energy Delivery
PIVA, SERGIO
2025
Abstract
This PhD thesis is focused on the design, synthesis, and characterization of new porous materials belonging to the classes of metal-organic frameworks (MOFs) and hyper-crosslinked polymers (HCPs). The goal was to understand the adsorption processes in depth as well as the local and global dynamics, enabling the development of new porous materials with tailored properties for gas capture, separation, and storage. Two new isoreticular Al MOFs were fabricated by choosing an aliphatic molecular rotor (denoted as FTR, Free Trigonal Rotor) and its partially fluorinated analogous as organic ligands. Hyperpolarized 129Xe NMR spectroscopy demonstrated gas accessibility and revealed a remarkable chemical shift anisotropy diagnostic of the narrow ellipsoidal channels cross-section. CO2 adsorption isotherms showed a higher affinity for the polar walls of the fluorinated MOF, with an isosteric heat of adsorption (Qst) of about 30 kJ/mol. 1H T1 NMR relaxation times collected at different temperatures revealed correlated motions within domains of reorientating dipoles with virtually negligible activation energy that were dramatically affected by CO2 adsorption, which hampered the local dynamics of the dipolar rotors. To further investigate the relationship between porous frameworks and guest molecules, a series of new isoreticular pillared Zn MOFs were developed. The structures are characterized by 2D layers comprising FTR ligands pillared in the third dimension by progressively longer bispyridine ligands to elongate the pores and enhance guest molecule uptake. The total CO2 uptake at 195 K was effectively increased from 1.7 to 4.1 mmol/g while maintaining the selectivity toward N2. The local dynamics of the ligands and the global dynamics of the frameworks were studied by variable temperature 13C CP MAS and 1H T1 NMR relaxation times, revealing a complex motion of the molecular machine that was dramatically influenced by guest-induced structural changes. New HCPs were designed with a high density of carboxylic acids directly attached to the bridging units during the synthesis, thus without post-synthetic modification. The porous polymers displayed enhanced CO2 interactions with a Qst of about 35 kJ/mol, and breakthrough analysis demonstrated the effective CO2 separation from a CO2/N2 mixture for 16 min/g by using a stream of 6 sccm. In-situ chemical transformations were performed to convert carboxylic acids into carboxylates, generating a poly-ionic polymer that was tested for hydrogen storage at 77 K. The hydrogen isotherm showed a steep increase in the adsorption at low pressures with an uptake of 3.7 mmol/g at 1 bar, indicating good gas-framework interactions, and a total uptake at 100 bar of about 6.2 mmol/g. A different synthetic procedure was used to generate a new HCP maximizing the surface area and introducing porphyrin units coordinated to cobalt ions to generate specific sites of interaction for guest molecules, like CO2 and O2. The BET surface area was about 1331 m2/g, and the Qst for CO2 at 273 K was about 30 kJ/mol. UV-Vis spectroscopy confirmed the coordination of cobalt ions to the porphyrin in the porous polymer. Finally, the active pore sites of a series of isostructural Zr hetero-ligand MOFs were investigated by Xe. The pore sizes were modulated by the insertion of the two ligands with distinct steric encumbrance. Xe gas isotherms and hyperpolarized 129Xe NMR revealed that higher confinement in the corners of the tetrahedral cavities is beneficial for the adsorption of gas molecules, increasing the interaction between gas molecules and pore walls. The Xe isosteric heat of adsorption was evaluated as high as 24.5 kJ/mol, and a perfect correlation between the Qst and Xe NMR chemical shift was found as a function of pore dimension. The Xe adsorption properties of these MOFs and fluorescent ligands were used to detect radioactive noble gases by employing MOFs as gas concentrators and scintillating materials.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_789543.pdf
embargo fino al 28/03/2028
Dimensione
13.64 MB
Formato
Adobe PDF
|
13.64 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/199704
URN:NBN:IT:UNIMIB-199704