The need for innovative solutions is driving the rapid development of biomedical science and materials science to address the pressing challenges in medicine. Among these, the diagnosis and treatment of cancer, in particular hepatocellular carcinoma (HCC), continues to be a significant global concern. This research addresses these challenges by developing biodegradable biopolymer carriers for radioisotopes, focusing on their application in personalized internal radiotherapy and diagnostics. Recent advancements in imaging technologies, including MRI, CT, and PET, have significantly enhanced the precision of tumor localization and characterization, thereby establishing the foundation for targeted therapeutic strategies. However, conventional cancer treatments frequently encounter limitations, including toxicity, inefficiencies, and restricted targeting capabilities. Selective Internal Radiation Therapy (SIRT) has emerged as a promising alternative, employing radiolabeled microspheres to deliver localized radiation directly to tumors. This method significantly minimizes collateral damage to healthy tissues and enhances therapeutic efficacy. The efficacy of SIRT depends on developing microspheres that exhibit optimal properties, including biocompatibility, stability, and effective radiation delivery. This thesis investigates the potential of poly(lactic acid) (PLA), a biodegradable and biocompatible polymer derived from renewable resources, as a material for fabricating these microspheres. The physicochemical properties of PLA, including its thermal stability, crystallinity, and controlled degradation, contribute to its versatility for biomedical applications. Experimental investigations have been conducted to understand the effects of radiation on the molecular structure and thermal behavior of PLA, providing valuable insights into its suitability for therapeutic use. Additionally, the study examines how synthesis parameters influence the size, crystallinity, and stability of PLA-based microspheres, emphasizing the importance of precise processing techniques in optimizing their performance. The thesis also introduces an innovative approach by incorporating europium, a rare-earth element, into PLA microspheres to mimic the presence of a radioisotope. This modification alters the microspheres' structural, morphological, and thermal properties. Detailed spectroscopic analyses elucidate the interactions between the polymer matrix and europium that form cross-links between the chains and make the material more resistant to both the hydrolytic and radiation degradation mechanisms. PLA microspheres can be customized to fulfill the specific needs of targeted therapies and diagnostics. The findings presented here contribute to developing innovative materials for SIRT, addressing the challenges in cancer therapy and using greener and more sustainable healthcare solutions. The outcomes advance the radiotherapeutic systems field and set the stage for future innovations in personalized medicine and sustainable biomedical technologies.
La crescente necessità di soluzioni innovative sta accelerando lo sviluppo della scienza biomedica e della scienza dei materiali per affrontare le sfide emergenti della medicina. In particolare, la diagnosi e il trattamento del cancro, in particolare del carcinoma epatocellulare (HCC), continuano a rappresentare una preoccupazione significativa a livello globale. Questa ricerca affronta tali sfide sviluppando vettori biodegradabili per radioisotopi, con un focus sulla loro applicazione nella diagnostica e nella radioterapia interna personalizzata. I recenti progressi nelle tecnologie di imaging, come la risonanza magnetica (RM), la tomografia computerizzata (TC) e la tomografia a emissione di positroni (PET), hanno migliorato notevolmente la precisione nella localizzazione e caratterizzazione dei tumori, creando così le basi per strategie terapeutiche mirate. Tuttavia, i trattamenti antitumorali convenzionali presentano tuttora diversi limiti, tra cui tossicità, inefficienza e capacità di targeting limitata. La radioterapia interna selettiva (SIRT) si è proposta come una valida alternativa, che impiega microsfere radiomarcate per somministrare radiazioni localizzate direttamente ai tumori. Questo approccio riduce significativamente i danni collaterali ai tessuti sani e migliora l'efficacia terapeutica. Quest’ultima dipende dalla realizzazione di microsfere con proprietà ottimali, come biocompatibilità, stabilità e somministrazione efficace di radiazioni. Questa tesi esplora il potenziale del poli(acido lattico) (PLA), un polimero biodegradabile e biocompatibile derivato da risorse rinnovabili, come materiale per la produzione di microsfere per applicazioni terapeutiche. Le sue proprietà fisico-chimiche, tra cui stabilità termica, cristallinità e degradazione controllata, contribuiscono alla sua versatilità per le applicazioni biomediche. Sono state condotti studi sperimentali per valutare e comprendere gli effetti delle radiazioni sulla struttura molecolare e sul comportamento termico del PLA, fornendo preziose indicazioni sulla sua idoneità all'uso terapeutico. Inoltre, la ricerca ha esaminato come i parametri di sintesi influenzino dimensioni, cristallinità e stabilità delle microsfere a base di PLA, evidenziando l'importanza di precise tecniche di produzione per ottimizzarne le prestazioni. Un aspetto innovativo della tesi è l'incorporazione dell'europio, un elemento delle terre rare, nelle microsfere di PLA per simulare la presenza di un radioisotopo. Questa modifica altera le proprietà strutturali, morfologiche e termiche delle microsfere. Analisi spettroscopiche dettagliate hanno rivelato le interazioni tra la matrice polimerica e l'europio, che forma legami a ponte tra le catene del polimero, conferendo al materiale maggiore resistenza alla degradazione idrolitica e da radiazioni. Le microsfere di PLA possono essere progettate e personalizzate per rispondere alle esigenze specifiche di terapie e diagnostica mirate. I risultati di questa tesi contribuiscono allo sviluppo di materiali innovativi per la SIRT, affrontando le sfide della terapia del cancro e proponendo soluzioni terapeutiche più ecologiche e sostenibili. Gli esiti di questo studio fanno avanzare il campo dei sistemi radioterapici e pongono le basi per future innovazioni nella medicina personalizzata e nelle tecnologie biomediche sostenibili.
Green fabrication of biodegradable biopolymer carriers of radioisotopes and markers for personalized internal radiotherapy and diagnostics
TAMBURINI, GIULIA
2025
Abstract
The need for innovative solutions is driving the rapid development of biomedical science and materials science to address the pressing challenges in medicine. Among these, the diagnosis and treatment of cancer, in particular hepatocellular carcinoma (HCC), continues to be a significant global concern. This research addresses these challenges by developing biodegradable biopolymer carriers for radioisotopes, focusing on their application in personalized internal radiotherapy and diagnostics. Recent advancements in imaging technologies, including MRI, CT, and PET, have significantly enhanced the precision of tumor localization and characterization, thereby establishing the foundation for targeted therapeutic strategies. However, conventional cancer treatments frequently encounter limitations, including toxicity, inefficiencies, and restricted targeting capabilities. Selective Internal Radiation Therapy (SIRT) has emerged as a promising alternative, employing radiolabeled microspheres to deliver localized radiation directly to tumors. This method significantly minimizes collateral damage to healthy tissues and enhances therapeutic efficacy. The efficacy of SIRT depends on developing microspheres that exhibit optimal properties, including biocompatibility, stability, and effective radiation delivery. This thesis investigates the potential of poly(lactic acid) (PLA), a biodegradable and biocompatible polymer derived from renewable resources, as a material for fabricating these microspheres. The physicochemical properties of PLA, including its thermal stability, crystallinity, and controlled degradation, contribute to its versatility for biomedical applications. Experimental investigations have been conducted to understand the effects of radiation on the molecular structure and thermal behavior of PLA, providing valuable insights into its suitability for therapeutic use. Additionally, the study examines how synthesis parameters influence the size, crystallinity, and stability of PLA-based microspheres, emphasizing the importance of precise processing techniques in optimizing their performance. The thesis also introduces an innovative approach by incorporating europium, a rare-earth element, into PLA microspheres to mimic the presence of a radioisotope. This modification alters the microspheres' structural, morphological, and thermal properties. Detailed spectroscopic analyses elucidate the interactions between the polymer matrix and europium that form cross-links between the chains and make the material more resistant to both the hydrolytic and radiation degradation mechanisms. PLA microspheres can be customized to fulfill the specific needs of targeted therapies and diagnostics. The findings presented here contribute to developing innovative materials for SIRT, addressing the challenges in cancer therapy and using greener and more sustainable healthcare solutions. The outcomes advance the radiotherapeutic systems field and set the stage for future innovations in personalized medicine and sustainable biomedical technologies.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_790364.pdf
accesso aperto
Dimensione
7.32 MB
Formato
Adobe PDF
|
7.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/199705
URN:NBN:IT:UNIMIB-199705