The rapid growth of the world's population and major technological advances have significantly increased global energy consumption, especially fossil fuel consumption, drastically increasing pollution and CO2 emissions and lead to climate change. In this context, photovotaic (PV) technologies is the best solution to accelerate energy production and a sustainable solution for the world’s future energy needs. The constant search for low material usage, high efficiency and low production costs is driving the scientific community in the field of PV away from the classical Si-based technologies with high performance but low production quantity towards thin-film technologies. Perovskite solar cells (PSCs) have attracted much attention as a promising new thin-film PV technology due to their remarkable performance. However, some issues related to their long-term stability still need to be solved before they can be used commercially, as they degrade rapidly and are highly susceptible to various external stress factors. This thesis aims to the develop non-toxic and cost-effective Cu₂ZnSnS₄ (CZTS) nanoparticles (NPs) for use as hole transporting materials (HTMs) in PSCs, due to its promising properties. These properties included p-type semiconductivity, chemical stability, high hole mobility (3.2 x 10-2 cm2V-1), electron-blocking ability, and a suitable valence band position that matches well with perovskite materials. The CZTS NPs were synthesised by hot injection method under an inert atmosphere using a Schlenk line. The effect of the injection temperatures on the crystalline size, morphology and crystal structure was studied using different characterisation techniques. The NP ink was optimised with the aim of producing a uniform, and compact CZTS NP film to ensure sufficient light absorption by the active perovskite layer, which is crucial for generating a high photocurrent. The layer consisting of CZTS NPs was developed to be deposited on the transparent conductive oxide (TCO) for both p-i-n and n-i-p device architecture. The control devices were prepared for comparison with organic HTM (MeO-2PACz) and Spiro-OMeTAD, which provides energy conversion efficiencies (η) consistent with the literature. In the p-i-n PSC based on the CZTS NPs, the η increased from 4.71 to 6.38% after two weeks and remained stable over the following 16 weeks. While, the η of the organic HTM-based device lose from 12.07 to 6.87% within 18 weeks. EQE, steady-state and time-resolved photoluminescence measurements further investigated this behaviour. The data analysis suggests that the charge injection from the halide perovskite layer (CH3NH3PbI3) to the CZTS nanoparticles is more effective than that of the organic HTM. The n-i-p PSCs employing FAPbI3 as perovskite layer and TiO2/SnO2 as ETM yielded a PCE of 5.76% and a JSC of 24.24 mA/cm2. Meanwhile, the control device based on Spiro-OMeTAD as HTM achieved PCE of 11.63% with JSC of 18.96 mA/cm2, confirming that CZTS NPs are promising candidates to replace organic HTMs after optimizing the nanoparticles’ chemical composition and the compactness of the resulting film to increase their charge mobility and lifetime. In addition to HTM applications, CZTS NPs are also used for photocatalytic applications. As they efficiently utilise a large portion of the solar spectrum, they are used for the photocatalytic degradation of one of the emerging pharmaceutical micropollutants, namely diclofenac (DCF) in water, which is known for its negative impact on the environment and poses a threat to global ecosystems. The result shows that DCF is degraded by an impressive 90% within 120 min without the formation of carbazoles. More importantly, CZTS only works under visible light. Due to its absorption properties in visible light, our catalytic system showed the same performance under both UV-vis and visible light conditions. This makes it suitable for indoor applications with visible light sources.
La crescita della popolazione mondiale e i grandi progressi tecnologici hanno aumentato in modo significativo il consumo globale di energia, soprattutto di combustibili fossili, aumentando drasticamente l'inquinamento e le emissioni di CO2 e provocando cambiamenti climatici. In questo contesto, le tecnologie fotovoltaica (PV) rappresentano la soluzione migliore per accelerare la produzione di energia e una soluzione sostenibile per le future esigenze energetiche del mondo. La ricerca costante di un basso utilizzo di materiali, alta efficienza e bassi costi di produzione sta allontanando la comunità scientifica PV dalle classiche tecnologie basate su Si con alte prestazioni ma bassa quantità di produzione verso tecnologie a film sottile. Le celle solari in perovskite (PSC) hanno attirato molta attenzione come una promettente nuova tecnologia PV a film sottile grazie alle loro notevoli prestazioni. Tuttavia, alcuni problemi relativi alla loro stabilità a lungo termine devono ancora essere risolti prima che possano essere utilizzate commercialmente, poiché si degradano rapidamente e sono altamente sensibili a vari fattori di stress esterni. Questa tesi mira a sviluppare nanoparticelle (NP) CZTS non tossiche ed economiche da utilizzare come materiali di trasporto di buche (HTM) nelle PSC grazie alle sue promettenti proprietà. Queste proprietà includevano semiconduttività di tipo p, stabilità chimica, elevata mobilità dei buchi (3,2 x 10-2 cm2V-1), capacità di blocco degli elettroni e una posizione della banda di valenza adatta che si adatta bene ai materiali perovskiti. Le NP sono state sintetizzate con il metodo di iniezione a caldo in atmosfera inerte utilizzando una linea Schlenk. L'effetto delle temperature di iniezione sulle dimensioni dei cristalli e sulla struttura cristallina è stato studiato utilizzando diverse tecniche di caratterizzazione. L'inchiostro NP è stato ottimizzato con l'obiettivo di produrre una pellicola di CZTS uniforme e compatta per garantire un assorbimento della luce sufficiente da parte dello strato di perovskite attivo, che è fondamentale per generare un'elevata fotocorrente. Lo strato di nanoparticelle di CZTS è stato sviluppato per essere depositato su TCO per l'architettura del dispositivo sia p-i-n che n-i-p. I dispositivi di controllo sono stati preparati per il confronto con HTM organico MeO-2PACz e Spiro-OMeTAD, che fornisce PCE coerente con la letteratura. Nel PSC p-i-n basato su NP CZTS, l'efficienza (η) è aumentata dal 4.71 al 6.38% dopo due settimane ed è rimasta stabile nelle successive 16 settimane. Al contrario, la η del dispositivo basato su HTM organico è diminuita dal 12.07 al 6% entro 18 settimane. Le misurazioni EQE, steady-state e PL risolte nel tempo hanno ulteriormente indagato questo comportamento. L'analisi dei dati suggerisce che l'iniezione di carica dallo strato di MAPbI3 alle NP CZTS è più efficace di quella di HTM organico. I PSC n-i-p che impiegano FAPbI3 come strato di perovskite e TiO2/SnO2 come ETM hanno raggiunto un PCE del 5.76% e un JSC di 24,24 mA/cm2. Nel frattempo, il dispositivo basato su Spiro-OMeTAD ha ottenuto un PCE dell'11.63% con un JSC di 18.96 mA/cm2, confermando che le nanoparticelle CZTS sono promettenti candidate per sostituire gli HTM organici dopo aver ottimizzato la composizione chimica delle nanoparticelle e la compattezza del film risultante per aumentarne la mobilità di carica e la durata. Oltre alle applicazioni HTM, le NP CZTS vengono utilizzate anche per applicazioni PV. Poiché utilizzano in modo efficiente una grande porzione dello spettro solare, vengono utilizzate per la degradazione fotocatalitica di uno dei microinquinanti farmaceutici emergenti, ovvero il diclofenac (DCF) in acqua, che è noto per avere un impatto negativo sull'ambiente e rappresenta una minaccia per gli ecosistemi globali. Il risultato mostra che il DCF si degrada di un impressionante 90% entro 120 min senza la formazione di carbazoli.
KESTERITE NANOPARTICLES FOR PHOTOVOLTAICS AND PHOTOCATALYSIS
HUSIEN, AMIN HASAN
2025
Abstract
The rapid growth of the world's population and major technological advances have significantly increased global energy consumption, especially fossil fuel consumption, drastically increasing pollution and CO2 emissions and lead to climate change. In this context, photovotaic (PV) technologies is the best solution to accelerate energy production and a sustainable solution for the world’s future energy needs. The constant search for low material usage, high efficiency and low production costs is driving the scientific community in the field of PV away from the classical Si-based technologies with high performance but low production quantity towards thin-film technologies. Perovskite solar cells (PSCs) have attracted much attention as a promising new thin-film PV technology due to their remarkable performance. However, some issues related to their long-term stability still need to be solved before they can be used commercially, as they degrade rapidly and are highly susceptible to various external stress factors. This thesis aims to the develop non-toxic and cost-effective Cu₂ZnSnS₄ (CZTS) nanoparticles (NPs) for use as hole transporting materials (HTMs) in PSCs, due to its promising properties. These properties included p-type semiconductivity, chemical stability, high hole mobility (3.2 x 10-2 cm2V-1), electron-blocking ability, and a suitable valence band position that matches well with perovskite materials. The CZTS NPs were synthesised by hot injection method under an inert atmosphere using a Schlenk line. The effect of the injection temperatures on the crystalline size, morphology and crystal structure was studied using different characterisation techniques. The NP ink was optimised with the aim of producing a uniform, and compact CZTS NP film to ensure sufficient light absorption by the active perovskite layer, which is crucial for generating a high photocurrent. The layer consisting of CZTS NPs was developed to be deposited on the transparent conductive oxide (TCO) for both p-i-n and n-i-p device architecture. The control devices were prepared for comparison with organic HTM (MeO-2PACz) and Spiro-OMeTAD, which provides energy conversion efficiencies (η) consistent with the literature. In the p-i-n PSC based on the CZTS NPs, the η increased from 4.71 to 6.38% after two weeks and remained stable over the following 16 weeks. While, the η of the organic HTM-based device lose from 12.07 to 6.87% within 18 weeks. EQE, steady-state and time-resolved photoluminescence measurements further investigated this behaviour. The data analysis suggests that the charge injection from the halide perovskite layer (CH3NH3PbI3) to the CZTS nanoparticles is more effective than that of the organic HTM. The n-i-p PSCs employing FAPbI3 as perovskite layer and TiO2/SnO2 as ETM yielded a PCE of 5.76% and a JSC of 24.24 mA/cm2. Meanwhile, the control device based on Spiro-OMeTAD as HTM achieved PCE of 11.63% with JSC of 18.96 mA/cm2, confirming that CZTS NPs are promising candidates to replace organic HTMs after optimizing the nanoparticles’ chemical composition and the compactness of the resulting film to increase their charge mobility and lifetime. In addition to HTM applications, CZTS NPs are also used for photocatalytic applications. As they efficiently utilise a large portion of the solar spectrum, they are used for the photocatalytic degradation of one of the emerging pharmaceutical micropollutants, namely diclofenac (DCF) in water, which is known for its negative impact on the environment and poses a threat to global ecosystems. The result shows that DCF is degraded by an impressive 90% within 120 min without the formation of carbazoles. More importantly, CZTS only works under visible light. Due to its absorption properties in visible light, our catalytic system showed the same performance under both UV-vis and visible light conditions. This makes it suitable for indoor applications with visible light sources.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_848214.pdf
accesso aperto
Dimensione
7.2 MB
Formato
Adobe PDF
|
7.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/200941
URN:NBN:IT:UNIMIB-200941