Energy communities have recently emerged as a solution to promote decarbonization and social goals at the local level. Indeed, citizens and local entities have the opportunity to improve environmental and social welfare and play an active role in the energy transition. Therefore, technological, social, and environmental challenges need to be faced jointly when shaping and managing the local energy system. In this perspective, the research presented in this thesis provides innovative frameworks to optimize resources on supply and demand sides, with a focus on energy communities applications. Economic, environmental, and even social factors are considered for the sake of a holistic approach towards energy communities' planning and the assessment of their benefits. When all the latter factors are considered within a multi-objective approach, significant financial and environmental benefits can be achieved through demand-side management programs from community members. A novel objective function has been proposed to account the social comfort associated to changes in participants' consumption habits. The analysis confirmed how a 10% of accepted discomfort is yet sufficient to provide remarkable reduction in investment cost and emissions. If the participation in energy communities is extended to more communities simultaneously, the conditions to obtain additional profitability for a potential new participant need to be investigated and compared to the single participation case. Through an optimization model, a 6% maximum individual revenues for a potential new prosumer have been evaluated, being the latter able to purchase and sell energy to more communities. However, profits decreased when more self-sufficient communities are considered, or when larger minimum shares of energy are required to be purchase or sold from the new participant. Once the economic profitability of multiple participation is assessed for a single participant, it has been possible to extend the analysis to all participants and assets, within a pre-defined set of communities. Technical benefits for the distribution grid have been considered in the form of peak demand at the transformer level, and different thresholds of load shedding at end-users' level have been considered as well. From an aggregated perspective, multiple participation outperformed single participation in the reduction of costs (3.5%), emissions (up to 10%) and peak demand (up to 30%). More important, most of benefits are achieved at low percentages of demand curtailed (thus, discomfort) to end-users (below 1%). However, imbalances on benefits were evaluated at the individual level, where smaller communities had highest benefits and larger communities resulted to be penalized.
Le comunità energetiche sono emerse di recente come soluzione per promuovere decarbonizzazione e obiettivi sociali a livello locale. Infatti, cittadini ed enti locali hanno l’opportunità di migliorare benessere ambientale e sociale e giocare un ruolo fondamentale nella transizione energetica. Perciò, sfide a livello tecnico, tecnico, sociale, e ambientale devono essere considerati unitamente quando si opera il sistema energetico locale. Sotto questa prospettiva, la ricerca presentata in questa tesi fornisce metodologie innovative per ottimizzare le risorse lato generazione e domanda, con particolare enfasi in applicazioni in comunità energetiche. Fattori economici, ambientali, e sociali sono considerati per ottenere un approccio multidisciplinare riguardo la pianificazione e la valutazione dei benefici di comunità energetiche. Quando questi ultimi fattori sono considerati insieme attraverso un approccio multi-obiettivo, benefici significativi in termini economici ed ambientali possono essere raggiunti attraverso programmi di gestione domanda da parte dei membri. Una nuova funzione obiettivo sociale è stata proposta per considerare il comfort sociale associato al cambio delle abitudini di consumare energia. Le analisi hanno confermato come un 10% di discomfort sia già sufficiente per ottenere considerevoli riduzioni in costi di investimenti ed emissioni. Se la partecipazione viene estesa a più comunità simultaneamente, è necessario investigare le condizioni attraverso cui questa può fornire ricavi addizionali rispetto alla classica partecipazione singola. Attraverso un modello di ottimizzazione, sono stati calcolati risparmi addizionali massimi del 6% per un potenziale nuovo prosumer, essendo in grado di acquistare e vendere energia a più comunità. Questi benefici risultano essere minori in caso di comunità più autosufficienti, oppure quando vengono fissate maggiori soglie di energia da dover essere condivisa. Dopo che la convenienza economica della partecipazione multipla è stata studiata per un singolo partecipante, è stato possibile estendere l’analisi a tutti i partecipanti, generatori, e accumuli all’intero di comunità preesistenti. I benefici tecnici per la rete di distribuzione sono stati anche valutati sotto forma di picco di domanda rilevato a livello del trasformatore, e differenti quote di riduzione domanda a livello del singolo utente sono state considerate. Da un punto di vista aggregato, la partecipazione multipla ha dato più benefici in termini di riduzione costi (3.5%), emissioni (fino al 10%) e riduzione picco domanda (fino al 30%) rispetto alla partecipazione singola. Ancora più importante, questi costi sono stati raggiunti a basse percentuali di riduzione domanda (meno dell’1%). Tuttavia, sono stati calcolati anche sbilanciamenti riguardo i benefici a livello di singola comunità, dove comunità con poca generazione risultano avere i benefici maggiori e quelle con generazione maggiore risultano penalizzate.
Ottimizzare le comunità di energia rinnovabile attraverso una partecipazione potenziata nel processo decisionale collettivo
MARIUZZO, IVAN
2025
Abstract
Energy communities have recently emerged as a solution to promote decarbonization and social goals at the local level. Indeed, citizens and local entities have the opportunity to improve environmental and social welfare and play an active role in the energy transition. Therefore, technological, social, and environmental challenges need to be faced jointly when shaping and managing the local energy system. In this perspective, the research presented in this thesis provides innovative frameworks to optimize resources on supply and demand sides, with a focus on energy communities applications. Economic, environmental, and even social factors are considered for the sake of a holistic approach towards energy communities' planning and the assessment of their benefits. When all the latter factors are considered within a multi-objective approach, significant financial and environmental benefits can be achieved through demand-side management programs from community members. A novel objective function has been proposed to account the social comfort associated to changes in participants' consumption habits. The analysis confirmed how a 10% of accepted discomfort is yet sufficient to provide remarkable reduction in investment cost and emissions. If the participation in energy communities is extended to more communities simultaneously, the conditions to obtain additional profitability for a potential new participant need to be investigated and compared to the single participation case. Through an optimization model, a 6% maximum individual revenues for a potential new prosumer have been evaluated, being the latter able to purchase and sell energy to more communities. However, profits decreased when more self-sufficient communities are considered, or when larger minimum shares of energy are required to be purchase or sold from the new participant. Once the economic profitability of multiple participation is assessed for a single participant, it has been possible to extend the analysis to all participants and assets, within a pre-defined set of communities. Technical benefits for the distribution grid have been considered in the form of peak demand at the transformer level, and different thresholds of load shedding at end-users' level have been considered as well. From an aggregated perspective, multiple participation outperformed single participation in the reduction of costs (3.5%), emissions (up to 10%) and peak demand (up to 30%). More important, most of benefits are achieved at low percentages of demand curtailed (thus, discomfort) to end-users (below 1%). However, imbalances on benefits were evaluated at the individual level, where smaller communities had highest benefits and larger communities resulted to be penalized.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Ivan_Mariuzzo.pdf
accesso aperto
Dimensione
3.17 MB
Formato
Adobe PDF
|
3.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/201021
URN:NBN:IT:IUSSPAVIA-201021