The Intergovernmental Panel on Climate Change has identified the rise in greenhouse gases (GHGs) from human activities as the primary driver of global warming. Hydrofluorocarbons (HFCs), though ozone-friendly, are potent GHGs used to replace ozone-depleting substances like chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Due to their high global warming potential, the Kigali Amendment to the Montreal Protocol mandates that over 140 countries reduce HFC production and consumption by 80% within the next 30 years, with developed countries (including Italy) targeting an 85% reduction by 2036. Accurate estimation of these emissions is crucial to assist policymakers in implementing effective mitigation strategies. Atmospheric inverse modelling is becoming a widely used method to provide observation-based estimates of GHGs with the potential to provide an independent verification tool for national emission inventories based on bottom-up statistical methods. This thesis focuses on optimising the inverse modelling framework at the regional level and applying it to determine the Italian and European emissions of HFC-134a, the most abundant HFC in the atmosphere. In the first part of the thesis, I describe different sensitivity experiments conducted using the FLEXINVERT+ framework to optimise the spatial and temporal emissions of long-lived GHGs at the regional-to-country scale. For the inversions, I used the atmospheric observations of HFC-134a from three European sites of the AGAGE measurement network. I tested different a priori emission fluxes, baseline detection methods, observation selection criteria, and observation station configurations. The inversion framework was found to be more robust to the use of different a priori emissions and a posteriori emissions were driven by the observations. The inclusion of additional measurement stations reduced the uncertainties in the a posteriori estimates. The use of selection criteria for observations, especially for mountain stations, improved the observation-model mismatch. The background mixing ratios were the sensitive factor to the regional emission estimates, which could be improved by optimising the background mixing ratios. The inversion framework was also found to be competent in finding induced seasonality in the synthetic emission fields. In the second part of the thesis, I describe the results obtained by applying the described inversion framework to estimate long-term emission estimates of HFC-134a for the EU and Italy. Since 2015, no top-down observation-informed estimates have been reported for Italy. Therefore, this thesis aimed to fill this gap by estimating top-down emissions from 2008 to 2023, when HFC restriction policies have been implemented in Europe. My findings revealed an increasing trend in Italian HFC-134a emissions from 2008 to 2015, followed by a steady decrease thereafter. I compared the inversion results with the Italian National bottom-up emission Inventories Reports (NIRs) and analysed the discrepancies between the estimates derived with the two methods. Both methods estimate a decreasing trend in HFC-134a emissions in the last decade, consistent with the implementation of the restrictions on the use of HFCs. However, the emissions estimated by the inversion are lower than those reported in the NIRs. In a more detailed analysis related to the year 2020, the inversion revealed a reduction in HFC-134a emissions in the Po Basin, likely to be related to mobility restrictions imposed during the COVID-19 pandemic, which is not captured by bottom-up methods, thus confirming the robustness of the proposed approach. These results highlight the need for further collaboration with inventory compilers to reduce the gaps between top-down and bottom-up estimates.
L'Intergovernmental Panel on Climate Change ha identificato l'aumento dei gas climalteranti derivanti da attività antropiche come il principale motore del riscaldamento globale. Gli idrofluorocarburi (HFC) sono potenti gas climalteranti utilizzati per sostituire sostanze che distruggono lo strato di ozono: i clorofluorocarburi e gli idroclorofluorocarburi. A causa del loro elevato potenziale di riscaldamento globale, l'emendamento di Kigali al Protocollo di Montreal impone ad oltre 140 paesi di ridurre la produzione e il consumo di HFC dell'80% entro i prossimi 30 anni. Una stima accurata di queste emissioni è fondamentale per aiutare i decisori politici a implementare strategie di mitigazione efficaci. La modellistica atmosferica inversa sta diventando un metodo ampiamente utilizzato per fornire stime di emissioni basate sulle osservazioni e costituisce un potenziale strumento di verifica indipendente per la compilazione degli inventari nazionali delle emissioni. Questa tesi si concentra sull'ottimizzazione del modello di modellistica inversa su scala regionale e sulla sua applicazione per determinare le emissioni italiane ed europee di HFC-134a, il più abbondante degli HFC in atmosfera. Nella prima parte della tesi, descrivo diversi esperimenti di sensibilità condotti utilizzando il framework di inversione FLEXINVERT+, allo scopo di ottimizzare la stima spazio-temporale a scala regionale delle emissioni di gas con tempi di vita lunghi. Per le inversioni, ho utilizzato le osservazioni atmosferiche di HFC-134a condotte in tre stazioni europee della rete di monitoraggio AGAGE, testando diversi flussi di emissione a priori, diversi metodi di estrazione delle concentrazioni di fondo, diversi criteri di selezione delle osservazioni e configurazioni delle stazioni di osservazione. Il framework di inversione è risultato più robusto con l’uso di determinati campi di emissione a priori, con le emissioni a posteriori guidate dalle osservazioni. L'aggiunta di più stazioni di misura ha ridotto le incertezze nelle stime a posteriori. L'uso di criteri di selezione per le osservazioni, in particolare per le stazioni di montagna, ha ridotto le discrepanze tra le concentrazioni osservate e modellate: la scelta delle concentrazioni di fondo si è rivelata un fattore determinante, la cui ottimizzazione ha prodotto un miglioramento delle stime delle emissioni su scala regionale. Nella seconda parte della tesi, descrivo i risultati ottenuti utilizzando questo framework di inversione per stimare le emissioni a lungo termine di HFC-134a per l'Unione europea e l'Italia. Poiché le ultime emissioni top-down per l'Italia risalgono al 2015, questo lavoro, stimando le emissioni dal 2008 al 2023, colma la lacuna temporale relativa ad un periodo in cui in Europa sono state introdotte politiche di riduzione dell’utilizzo degli HFC. I miei risultati hanno rivelato un trend crescente nelle emissioni italiane di HFC-134a dal 2008 al 2015, seguito da una costante diminuzione. Ho confrontato i risultati dell'inversione con gli inventari nazionali compilati attraverso metodi bottom-up e analizzato le discrepanze tra le stime ottenute con i due metodi: entrambi stimano una diminuzione delle emissioni nell’ultimo decennio, come ci si può aspettare dall’implementazione delle restrizioni imposte. Tuttavia le stime ricavate dall’inversione sono più basse di quelle riportate negli inventari. L’analisi dettagliata per l’anno 2020 stima una riduzione delle emissioni di HFC-134a nel bacino del Po, probabilmente correlata alle restrizioni alla mobilità imposte durante la pandemia di COVID, non colta dai metodi bottom-up, confermando così l’affidabilità della metodologia proposta. Questi risultati evidenziano la necessità di una continua collaborazione tra i compilatori degli inventari per ridurre il divario nella stime top-down e bottom-up.
Stima delle emissioni su scala regionale di specie radiativamente attive mediante tecniche di modellistica inversa.
ANNADATE, SAURABH
2025
Abstract
The Intergovernmental Panel on Climate Change has identified the rise in greenhouse gases (GHGs) from human activities as the primary driver of global warming. Hydrofluorocarbons (HFCs), though ozone-friendly, are potent GHGs used to replace ozone-depleting substances like chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Due to their high global warming potential, the Kigali Amendment to the Montreal Protocol mandates that over 140 countries reduce HFC production and consumption by 80% within the next 30 years, with developed countries (including Italy) targeting an 85% reduction by 2036. Accurate estimation of these emissions is crucial to assist policymakers in implementing effective mitigation strategies. Atmospheric inverse modelling is becoming a widely used method to provide observation-based estimates of GHGs with the potential to provide an independent verification tool for national emission inventories based on bottom-up statistical methods. This thesis focuses on optimising the inverse modelling framework at the regional level and applying it to determine the Italian and European emissions of HFC-134a, the most abundant HFC in the atmosphere. In the first part of the thesis, I describe different sensitivity experiments conducted using the FLEXINVERT+ framework to optimise the spatial and temporal emissions of long-lived GHGs at the regional-to-country scale. For the inversions, I used the atmospheric observations of HFC-134a from three European sites of the AGAGE measurement network. I tested different a priori emission fluxes, baseline detection methods, observation selection criteria, and observation station configurations. The inversion framework was found to be more robust to the use of different a priori emissions and a posteriori emissions were driven by the observations. The inclusion of additional measurement stations reduced the uncertainties in the a posteriori estimates. The use of selection criteria for observations, especially for mountain stations, improved the observation-model mismatch. The background mixing ratios were the sensitive factor to the regional emission estimates, which could be improved by optimising the background mixing ratios. The inversion framework was also found to be competent in finding induced seasonality in the synthetic emission fields. In the second part of the thesis, I describe the results obtained by applying the described inversion framework to estimate long-term emission estimates of HFC-134a for the EU and Italy. Since 2015, no top-down observation-informed estimates have been reported for Italy. Therefore, this thesis aimed to fill this gap by estimating top-down emissions from 2008 to 2023, when HFC restriction policies have been implemented in Europe. My findings revealed an increasing trend in Italian HFC-134a emissions from 2008 to 2015, followed by a steady decrease thereafter. I compared the inversion results with the Italian National bottom-up emission Inventories Reports (NIRs) and analysed the discrepancies between the estimates derived with the two methods. Both methods estimate a decreasing trend in HFC-134a emissions in the last decade, consistent with the implementation of the restrictions on the use of HFCs. However, the emissions estimated by the inversion are lower than those reported in the NIRs. In a more detailed analysis related to the year 2020, the inversion revealed a reduction in HFC-134a emissions in the Po Basin, likely to be related to mobility restrictions imposed during the COVID-19 pandemic, which is not captured by bottom-up methods, thus confirming the robustness of the proposed approach. These results highlight the need for further collaboration with inventory compilers to reduce the gaps between top-down and bottom-up estimates.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Annadate.pdf
accesso aperto
Dimensione
18.26 MB
Formato
Adobe PDF
|
18.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/201052
URN:NBN:IT:IUSSPAVIA-201052