Climate change is the greatest challenge of modern agriculture significantly impacting agricultural systems through an increased frequency and intensity of extreme environmental events. Maize, a crucial crop for food security worldwide, is highly susceptible to these changes pointing to the urgent development of resilient varieties. Maize landraces can represent a useful germplasm where breeders may source adaptation alleles. In this context the present research aims (a) to perform a deep morphologic and genetic characterization of twenty-eight landraces among the most representative and important maize landraces of central and northern Italy, secondly, (b) to identify genetic markers associated to specific environmental factors by three different landscape genomics approaches to support the development of resilient maize genotypes. Traditional maize landraces cultivated across Northern and Central Italy were retrieved from four germplasm collections; after the collection, they were cultivated at the CREI-CERZOO experimental farm and phenotypically analysed following UPOV TP/2/3 protocols. Male and female flowering, and plant height were analysed as well as the altitude; resulting data were processed by calculating the mean and standard deviation for each trait across all samples. Two thresholds were established: a lower limit, defined as the mean minus one standard deviation, and an upper limit, defined as the mean plus one standard deviation. Based on these thresholds, the traits were divided into three classes. This classification was applied consistently across the dataset, allowing for systematic grouping of the landraces. The results of this morphological characterization highlight the presence of both very early flowering, almost dwarf varieties, and late-flowering varieties with significant growth, such as the Rostrati group. The kernels are generally flint or flint-like, with considerable variability in coloration. Morphological diversity is present both between and within landraces. In the growing season of 2022, a total of 140 individuals (5 for each landrace) were sampled and genotyped using a genotyping-by-sequence (GBS) approach; the resulting genetic matrix was used to represent the collection's diversity. Population studies were conducted on the genomic dataset to investigate the genetic diversity and structure of the collection. Within the 12 ancestral population detected, there can be found well-defined populations, and completely admixed groups; this high degree of genetic fragmentation is reflected in the phylogenetic and in the PCA analysis, although clear differentiation of individual populations is exhibited. Subsequently, three distinct landscape genomics approaches were used to analyse the relation existing between climate and genetic variation of our materials. First, a multivariate method, Partial Redundancy Analysis (pRDA), revealed that 30% of the genetic variance in our collection is explained together by climate (45%), geography (11%), and genetic structure (31%). Three significantly associated SNPs were identified and two of these are localized in two distinct genes. Finally, we found a gene encoding the APETALA2 protein in the LD-window of one significant SNP. The second approach used Samβada software and identified two SNPs strongly linked with the environmental factor ‘wind’. The third landscape genomics approach applied is the Latent Factor Mixed Model (LFMM) analysis, which highlighted five SNPs significantly associated with environmental variables, specifically “wind” and “solar radiation”. Among the significant SNPs, two fall within known coding genes. Compared to Samβada, LFMM analysis identified fewer associations, probably due to its more conservative nature, with limited overlap between the two methods. The analysis of the results of the various landscape genomics approaches partially overlap and mutually reinforce each other: (i) Samβada and LFMM analyses identified two identical SNPs, confirming the reliability of these associations; (ii) all analyses identified associations in the same chromosomes 2, 8 and 10, finally (iii) all the identified genes regulate plant growth and response to abiotic stress. In conclusion, results highlight significant intra-population variability within the examined germplasm and reveal unique populations tied to ancestral lineages. Most notably, we identified distinct genetic markers strongly correlated with environmental factors. This discovery opens new avenues for potential genetic improvement in maize cultivation. Landraces preserve vital traits for maize's adaptation to environmental stresses, making them sources for breeding programs to improve stress tolerance and ensure stable yields under climate change.
Il cambiamento climatico rappresenta la sfida più grande per l'agricoltura moderna, influenzando significativamente i sistemi agricoli attraverso un aumento della frequenza e dell'intensità di eventi ambientali estremi. Il mais, una coltura fondamentale per la sicurezza alimentare a livello mondiale, è altamente suscettibile a questi cambiamenti, sottolineando l'urgenza di sviluppare varietà resistenti e/o meno suscettibili. Le varietà locali di mais possono rappresentare una risorsa genetica utile, da cui i breeder possono attingere geni interessanti per il miglioramento genetico degli ibridi. In questo contesto, il progetto di dottorato si propone caratterizzare approfonditamente a livello fenotipico e genetico ventotto tra le varietà locali di mais più rappresentative del Centro-Nord Italia e di utilizzare tre differenti approcci landscape genomics al fine di identificare possibili marcatori genetici associati a fattori ambientali. Le varietà locali di mais coltivate in sette regioni del Centro-Nord Italia sono state recuperate da quattro collezioni di germoplasma; successivamente sono state coltivate presso la fattoria sperimentale CREI-CERZOO per effettuare i rilievi morfologici seguendo le schede UPOV (protocollo TP/2/3). Sono stati analizzati fioritura maschile e femminile, l’altezza della pianta e l'altitudine; i dati ottenuti sono stati elaborati calcolando la media e la deviazione standard per ogni carattere su tutti i campioni. Sono stati stabiliti due limiti: un limite inferiore, definito come la media meno una deviazione standard, e un limite superiore, definito come la media più una deviazione standard. Sulla base di questi limiti, i caratteri sono stati suddivisi in tre classi. Questa classificazione è stata applicata in modo coerente all'intero set di dati, consentendo una suddivisione sistematica delle varietà. I risultati di questa caratterizzazione morfologica evidenziano la presenza di varietà a fioritura molto precoce, quasi nane, e varietà a fioritura tardiva con una crescita significativa, come il gruppo Rostrati. I chicchi sono generalmente di tipo flint o simili al flint, con una notevole variabilità nella colorazione. La diversità morfologica è presente sia tra che all'interno delle varietà. Durante la stagione di crescita del 2022, un totale di 140 individui (5 per ogni varietà) sono stati campionati e genotipizzati utilizzando un approccio di genotyping by sequencing (GBS); la matrice genetica risultante è stata utilizzata per rappresentare la diversità della collezione. Sono stati condotti studi sulla popolazione sul set di dati genomici per investigare la diversità genetica e la struttura della collezione. All'interno delle 12 popolazioni ancestrali individuate, si trovano popolazioni ben definite e gruppi completamente admixed; questo elevato grado di frammentazione genetica è riflesso nell'analisi filogenetica e nell'analisi delle componenti principali (PCA), anche se una chiara differenziazione tra le singole popolazioni è evidente. Successivamente, sono stati utilizzati tre approcci distinti di landscape genomics per analizzare la relazione esistente tra clima e variazione genetica dei materiali oggetto di studio. Il primo approccio, metodologia multivariata, Partial Redundncy Analysis (pRDA), ha rivelato che il 30% della varianza genetica nella nostra collezione è spiegata insieme da clima (45%), geografia (11%) e struttura genetica (31%). Sono stati identificati tre SNP significativamente associati, due dei quali sono localizzati in due geni distinti, non ancora caratterizzati. Infine, abbiamo identificato un gene codificante la proteina APETALA2 nella finestra di linkage di uno degli SNP significativi. Il secondo approccio, utilizzando il software Samβada, ha identificato due SNP significativamente associati alla variabile ambientale "vento". Il terzo approccio di landscape genomics applicato è quello dell’analisi Latent Factor Mixed Model (LFMM), che ha evidenziato cinque SNP significativamente associate a variabili ambientali, nello specifico “vento” e “radiazione solare”. Tra gli SNPs significativi, due ricadono all'interno di geni codificanti noti.Rispetto a Samβada, l’analisi LFMM ha identificato meno associazioni, probabilmente a causa della sua natura più conservativa. con una sovrapposizione limitata tra i due metodi. L’analisi dei risultati dei vari approcci di landscape genomics si sovrappongono parzialmente e si rafforzano reciprocamente: (i) le analisi Samβada e LFMM hanno identificato due SNP identici, confermando l'affidabilità di queste associazioni; (ii) tutte le analisi hanno individuato associazioni nei medesimi cromosomi 2, 8 e 10, infine (iii) tutti i geni identificati regolano la crescita delle piante e la risposta allo stress abiotico. In conclusione, i risultati evidenziano una significativa variabilità intra-popolazione nel germoplasma esaminato e rivelano popolazioni uniche legate a linee ancestrali. In particolare, abbiamo identificato marcatori genetici distinti fortemente correlati a fattori ambientali. Questa scoperta apre nuove strade per il potenziale miglioramento genetico nella coltivazione del mais. Le varietà locali preservano tratti vitali per l'adattamento del mais agli stress ambientali, rendendole una fonte importante per i programmi di miglioramento genetico per migliorare la tolleranza agli stress e garantire rese stabili di fronte ai cambiamenti climatici.
INCREASING ADAPTATION AND SUSTAINABILITY OF MAIZE CROP THROUGH LANDSCAPE GENOMICS
Lezzi, Alessandra
2025
Abstract
Climate change is the greatest challenge of modern agriculture significantly impacting agricultural systems through an increased frequency and intensity of extreme environmental events. Maize, a crucial crop for food security worldwide, is highly susceptible to these changes pointing to the urgent development of resilient varieties. Maize landraces can represent a useful germplasm where breeders may source adaptation alleles. In this context the present research aims (a) to perform a deep morphologic and genetic characterization of twenty-eight landraces among the most representative and important maize landraces of central and northern Italy, secondly, (b) to identify genetic markers associated to specific environmental factors by three different landscape genomics approaches to support the development of resilient maize genotypes. Traditional maize landraces cultivated across Northern and Central Italy were retrieved from four germplasm collections; after the collection, they were cultivated at the CREI-CERZOO experimental farm and phenotypically analysed following UPOV TP/2/3 protocols. Male and female flowering, and plant height were analysed as well as the altitude; resulting data were processed by calculating the mean and standard deviation for each trait across all samples. Two thresholds were established: a lower limit, defined as the mean minus one standard deviation, and an upper limit, defined as the mean plus one standard deviation. Based on these thresholds, the traits were divided into three classes. This classification was applied consistently across the dataset, allowing for systematic grouping of the landraces. The results of this morphological characterization highlight the presence of both very early flowering, almost dwarf varieties, and late-flowering varieties with significant growth, such as the Rostrati group. The kernels are generally flint or flint-like, with considerable variability in coloration. Morphological diversity is present both between and within landraces. In the growing season of 2022, a total of 140 individuals (5 for each landrace) were sampled and genotyped using a genotyping-by-sequence (GBS) approach; the resulting genetic matrix was used to represent the collection's diversity. Population studies were conducted on the genomic dataset to investigate the genetic diversity and structure of the collection. Within the 12 ancestral population detected, there can be found well-defined populations, and completely admixed groups; this high degree of genetic fragmentation is reflected in the phylogenetic and in the PCA analysis, although clear differentiation of individual populations is exhibited. Subsequently, three distinct landscape genomics approaches were used to analyse the relation existing between climate and genetic variation of our materials. First, a multivariate method, Partial Redundancy Analysis (pRDA), revealed that 30% of the genetic variance in our collection is explained together by climate (45%), geography (11%), and genetic structure (31%). Three significantly associated SNPs were identified and two of these are localized in two distinct genes. Finally, we found a gene encoding the APETALA2 protein in the LD-window of one significant SNP. The second approach used Samβada software and identified two SNPs strongly linked with the environmental factor ‘wind’. The third landscape genomics approach applied is the Latent Factor Mixed Model (LFMM) analysis, which highlighted five SNPs significantly associated with environmental variables, specifically “wind” and “solar radiation”. Among the significant SNPs, two fall within known coding genes. Compared to Samβada, LFMM analysis identified fewer associations, probably due to its more conservative nature, with limited overlap between the two methods. The analysis of the results of the various landscape genomics approaches partially overlap and mutually reinforce each other: (i) Samβada and LFMM analyses identified two identical SNPs, confirming the reliability of these associations; (ii) all analyses identified associations in the same chromosomes 2, 8 and 10, finally (iii) all the identified genes regulate plant growth and response to abiotic stress. In conclusion, results highlight significant intra-population variability within the examined germplasm and reveal unique populations tied to ancestral lineages. Most notably, we identified distinct genetic markers strongly correlated with environmental factors. This discovery opens new avenues for potential genetic improvement in maize cultivation. Landraces preserve vital traits for maize's adaptation to environmental stresses, making them sources for breeding programs to improve stress tolerance and ensure stable yields under climate change.File | Dimensione | Formato | |
---|---|---|---|
PHD_Publicatt_LEZZI.pdf
accesso solo da BNCF e BNCR
Dimensione
8.07 MB
Formato
Adobe PDF
|
8.07 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/201599
URN:NBN:IT:UNICATT-201599