Peanut (Arachis hypogaea L.), or groundnut, is a legume widespread in the world, with a global production of over 54 million tons per year. In recent years, this crop has been gaining importance in Italian agriculture, as demonstrated by the increase in peanut production from 44.3 tonnes to around 720 tonnes since 2020. However, despite this growing trend, the limited peanut production in Italy, in comparison to the global average, highlights the importance of enhancing the quality aspect of the Italian peanut supply chain in terms of food safety, sustainability, and circular economy. In this context, this PhD project aimed to i) study the production performances of Italian peanuts, investigate the fungal population of peanuts at harvest focusing on Aspergillus ssp. and quantify the possible aflatoxin contamination of seeds; ii) develop a mechanistic weather-driven prototype model “AFLA-peanut” to predict the risk of aflatoxin contamination in peanuts; iii) evaluate the effectiveness of a non-aflatoxigenic strain, used as a biocontrol agent, under simulated climate change conditions, on peanuts; iv) study possible ways to enhance the agroindustry peanut by-products obtained during processing. Chapter 1 provides an overview of peanut cultivation and the key issues addressed in this thesis. In particular, the main causes of aflatoxin contamination were examined, as well as the various methods that can be employed along the supply chain, to enhance production and prevent, reduce, and manage potential contamination of the final product. Furthermore, within the context of the circular economy of the supply chain, the valorisation of the by-products obtained from the different peanut cultivations was also explored. The second chapter reported a two-year study aimed at investigating the current situation of Italian peanut production, focusing on fungal population and aflatoxin contamination of seeds at harvest. The work was performed on 18 peanut fields, sampled during 2022 and 2023, across the provinces of Ferrara, Modena, Cuneo, Verona, Pordenone, and Avellino. The findings indicated that even though there was an increase in the incidence of A. flavus in 2023, the aflatoxin levels were well below the limits set by the European Union, suggesting the effectiveness of the agricultural practices implemented to achieve optimal crop management. While these promising findings concerning food safety in the pre-harvest phase of Italian peanut production, it is crucial to implement strategies to maintain this level of quality in the future. Thus, in chapter three, a weather-driven mechanistic prototype model, “AFLA-peanut,” was developed to predict AFB1 contamination in peanuts by adapting the AFLA-maize model to the A. flavus-peanut pathosystem. The first step of the work was to build a phenology model of peanut based on growing degree-days (GDD), which was linked to the A. flavus infection cycle and exploited to develop the AFLA-peanut model. According to the crop phenology model, short-season peanut varieties required 686 and 1925 GDD to reach, respectively, flowering (crucial growth stage for A. flavus infection) and harvesting, starting the computation from sowing. Yearly and locational variations in the AFB1 index, obtained as the output of AFLA-peanut, emphasized the potential of this model as a tool to manage AFB1 risk in peanuts. However, the predicted future warmer and drier periods caused by climate change, affecting the entire Mediterranean basin and Italy in particular, may lead to the spread of A. flavus and increase the risk of aflatoxin contamination in Italy. It is, therefore, essential to evaluate the impact of climate change on current pre-harvest strategies aimed at reducing aflatoxin contamination. To address this, different temperatures (T= 25, 30, 35°C), water activity (aw= 0.85, 0.90, 0.95), and CO2 concentrations (400, 1000 ppm) were investigated to assess the impact of climate change on the effectiveness of an A. flavus non-aflatoxigenic strain, the active agent of the biocontrol product AF-X1, in reducing fungal growth and mycotoxin production, on a peanut-based media (PBM) and peanut seeds. The results showed that the decrease in aw, and the shift of T from the optimum of 30°C, led to a reduction in fungal growth. The application of the non-aflatoxigenic strain as biocontrol agent inhibited aflatoxin B1 (AFB1) production under all treatments, up to 55% on PBM and 71% on peanut seeds. The circular economy aspect of the Italian peanut supply chain was dealt within the fifth chapter. Hermetia illucens larvae were reared on safe or fungal-contaminated peanut by-product substrates to assess larval growth performances. Different percentages (0%–100%, step 10%) of two agroindustry by-products (rich by-product, R; poor by-product, P) were mixed and rehydrated to 70% to produce 11 substrates. Starting from these, three trials were performed, and the fungal contamination effect was assessed by inoculating the substrate P5R5 (50% P and 50% R) with two spore suspensions (Aspergillus flavus and Fusarium graminearum, 105 spore/mL). The findings of this work provide evidence that H. illucens larvae may represent a potential way to enhance peanut by-products, even though substrate composition and fungal contamination, especially by A. flavus, may reduce the efficiency of the process.
L’arachide (Arachis hypogaea L.) è una coltura leguminosa di grande importanza a livello globale, con una produzione annuale che supera i 54 milioni di tonnellate. In Italia, la produzione di arachidi è in crescita, passando da 44,3 tonnellate nel 2020 a circa 720 tonnellate, segnalando un rinnovato interesse per questa coltura. Tuttavia, la produzione italiana rimane marginale rispetto alla media globale, evidenziando la necessità di valorizzare la filiera attraverso strategie che favoriscano la qualità, la sostenibilità e l'economia circolare. In questo contesto, il progetto di dottorato si è concentrato su alcuni degli aspetti principali della produzione italiana di arachidi, con particolare attenzione alla food safety, al miglioramento delle strategie di prevenzione e controllo del rischio di contaminazione, nonché alla valorizzazione dei sottoprodotti agroindustriali. Gli obiettivi specifici del progetto sono stati i) analizzare la produzione italiana di arachidi, esaminando la popolazione fungina presente al momento della raccolta, con particolare attenzione ad Aspergillus flavus, e valutare l’eventuale contaminazione da aflatossine; ii) sviluppare un prototipo di modello previsionale meccanicistico, denominato “AFLA-peanut”, per stimare il rischio di contaminazione da aflatossine nelle arachidi; iii) testare l’efficacia di un ceppo atossigeno di A. flavus come agente di biocontrollo in condizioni simulate di cambiamento climatico; iv) esplorare nuove strategie per valorizzare i sottoprodotti della lavorazione delle arachidi, con particolare riferimento al loro utilizzo come substrato di allevamento per le larve di Hermetia illucens. Nel Capitolo 2 è riportato uno studio biennale (2022-2023) sulla produzione italiana di arachidi, con particolare attenzione alla popolazione fungina e alla possibile contaminazione da aflatossine nei semi al momento della raccolta. L’indagine è stata condotta su 18 campi situati nelle province di Ferrara, Modena, Cuneo, Verona, Pordenone e Avellino. I risultati hanno mostrato che, sebbene nel 2023 sia stata riscontrata una maggiore incidenza di A. flavus, i livelli di aflatossine sono rimasti ben al di sotto dei limiti imposti dall’Unione Europea. Questo suggerisce che le pratiche agricole adottate in Italia siano efficaci nel prevenire la contaminazione pre-raccolta, pur richiedendo un monitoraggio costante per mantenere tali standard qualitativi. L’uso di modelli previsionali per stimare il rischio di contaminazione da aflatossine durante la stagione colturale può supportare l’ottimizzazione delle pratiche agronomiche, come l'irrigazione, il periodo di raccolta e la gestione post-raccolta. In questo contesto, nel Capitolo 3 viene affrontato lo sviluppo del prototipo di un modello previsionale meccanicistico, denominato AFLA-peanut, adattato dal modello AFLA-maize e calibrato per il patosistema A. flavus-arachide. Il primo passo è stato lo sviluppo di un modello fenologico della crescita dell’arachide, basato sui gradi-giorno di crescita (GDD). I risultati hanno indicato che le varietà a ciclo breve richiedono 686 GDD per raggiungere la fioritura (fase critica per l’infezione da A. flavus) e 1925 GDD per la raccolta. La variabilità dell’indice ottenuto come output del prototipo AFLA-peanut tra anni e località ha evidenziato l’elevata sensibilità del modello alle condizioni climatiche, in modo analogo a quanto osservato con AFLA-maize. Un aspetto cruciale che deve essere preso in considerazione parlando di contaminazione da aflatossine è il cambiamento climatico. L’aumento delle temperature, la riduzione dell’umidità e l’aumento della concentrazione di CO₂ atmosferica potrebbero favorire la diffusione di A. flavus e la conseguente produzione di aflatossine nelle arachidi italiane. Il biocontrollo, basato sull’uso di ceppi atossigeni dello stesso fungo, rappresenta attualmente la strategia più efficace per ridurre la contaminazione, ma le future condizioni climatiche potrebbero influenzarne l’efficacia. Per questo motivo, nel Capitolo 4 è stata valutata la capacità di un ceppo atossigeno di A. flavus (AF-X1) di ridurre la produzione di aflatossine da parte di un ceppo tossigeno, in condizioni simulate di cambiamento climatico. Sono state testate diverse combinazioni di temperatura (25, 30, 35°C), attività dell’acqua (aw = 0.85, 0.90, 0.95) e concentrazione di CO₂ (400, 1000 ppm), su due substrati differenti: un terreno a base di arachide (PBM) e i semi. I risultati hanno evidenziato che una riduzione dell’aw e un aumento della temperatura al di fuori dell’optimum di 30°C limitano la crescita fungina. Inoltre, l’applicazione dell’agente di biocontrollo ha ridotto la produzione di aflatossina B1 fino al 55% su PBM e al 71% sui semi. Nell’ottica della sostenibilità di filiera e dell’economia circolare, il Capitolo 5 ha esplorato la potenziale valorizzazione dei sottoprodotti delle arachidi. In particolare, le larve di Hermetia illucens sono state allevate su substrati ottenuti dai sottoprodotti della lavorazione delle arachidi, sia contaminati che non contaminati da funghi. Sono stati preparati 11 substrati con diverse percentuali di due tipi di sottoprodotto agroindustriale (R = ricco di nutrienti, P = povero di nutrienti), reidratati fino al 70%. Inoltre, per testare l’effetto della contaminazione fungina sulle larve, i substrati sono stati inoculati con A. flavus e Fusarium graminearum. I risultati hanno mostrato che le larve rappresentano un'opzione promettente per la valorizzazione dei sottoprodotti, ma la contaminazione fungina, in particolare da A. flavus, può ridurre l’efficacia del processo. Questa ricerca ha fornito un contributo significativo alla comprensione delle criticità della filiera italiana delle arachidi e ha individuato strategie innovative per migliorare la qualità del prodotto e la food safety. I risultati suggeriscono che le pratiche agricole italiane attuali sono efficaci nel mantenere bassi i livelli di aflatossine, ma è necessario un monitoraggio continuo. Per la gestione del rischio di contaminazione in pre-raccolta, il modello AFLA-peanut può rappresentare uno strumento utile per prevedere il rischio e supportare le decisioni agronomiche. Inoltre, l’uso di ceppi atossigeni di A. flavus come biocontrollo si conferma una strategia efficace per ridurre la produzione di aflatossine, anche in scenari di cambiamento climatico. Infine, la valorizzazione dei sottoprodotti mediante l’allevamento delle larve di H. illucens offre un’interessante opportunità per la sostenibilità della filiera.
ENHANCEMENT OF THE ITALIAN PEANUT SUPPLY CHAIN: AN INTEGRATED APPROACH TO ENSURE FOOD SAFETY AND BY-PRODUCTS VALORISATION
Crosta, Matteo
2025
Abstract
Peanut (Arachis hypogaea L.), or groundnut, is a legume widespread in the world, with a global production of over 54 million tons per year. In recent years, this crop has been gaining importance in Italian agriculture, as demonstrated by the increase in peanut production from 44.3 tonnes to around 720 tonnes since 2020. However, despite this growing trend, the limited peanut production in Italy, in comparison to the global average, highlights the importance of enhancing the quality aspect of the Italian peanut supply chain in terms of food safety, sustainability, and circular economy. In this context, this PhD project aimed to i) study the production performances of Italian peanuts, investigate the fungal population of peanuts at harvest focusing on Aspergillus ssp. and quantify the possible aflatoxin contamination of seeds; ii) develop a mechanistic weather-driven prototype model “AFLA-peanut” to predict the risk of aflatoxin contamination in peanuts; iii) evaluate the effectiveness of a non-aflatoxigenic strain, used as a biocontrol agent, under simulated climate change conditions, on peanuts; iv) study possible ways to enhance the agroindustry peanut by-products obtained during processing. Chapter 1 provides an overview of peanut cultivation and the key issues addressed in this thesis. In particular, the main causes of aflatoxin contamination were examined, as well as the various methods that can be employed along the supply chain, to enhance production and prevent, reduce, and manage potential contamination of the final product. Furthermore, within the context of the circular economy of the supply chain, the valorisation of the by-products obtained from the different peanut cultivations was also explored. The second chapter reported a two-year study aimed at investigating the current situation of Italian peanut production, focusing on fungal population and aflatoxin contamination of seeds at harvest. The work was performed on 18 peanut fields, sampled during 2022 and 2023, across the provinces of Ferrara, Modena, Cuneo, Verona, Pordenone, and Avellino. The findings indicated that even though there was an increase in the incidence of A. flavus in 2023, the aflatoxin levels were well below the limits set by the European Union, suggesting the effectiveness of the agricultural practices implemented to achieve optimal crop management. While these promising findings concerning food safety in the pre-harvest phase of Italian peanut production, it is crucial to implement strategies to maintain this level of quality in the future. Thus, in chapter three, a weather-driven mechanistic prototype model, “AFLA-peanut,” was developed to predict AFB1 contamination in peanuts by adapting the AFLA-maize model to the A. flavus-peanut pathosystem. The first step of the work was to build a phenology model of peanut based on growing degree-days (GDD), which was linked to the A. flavus infection cycle and exploited to develop the AFLA-peanut model. According to the crop phenology model, short-season peanut varieties required 686 and 1925 GDD to reach, respectively, flowering (crucial growth stage for A. flavus infection) and harvesting, starting the computation from sowing. Yearly and locational variations in the AFB1 index, obtained as the output of AFLA-peanut, emphasized the potential of this model as a tool to manage AFB1 risk in peanuts. However, the predicted future warmer and drier periods caused by climate change, affecting the entire Mediterranean basin and Italy in particular, may lead to the spread of A. flavus and increase the risk of aflatoxin contamination in Italy. It is, therefore, essential to evaluate the impact of climate change on current pre-harvest strategies aimed at reducing aflatoxin contamination. To address this, different temperatures (T= 25, 30, 35°C), water activity (aw= 0.85, 0.90, 0.95), and CO2 concentrations (400, 1000 ppm) were investigated to assess the impact of climate change on the effectiveness of an A. flavus non-aflatoxigenic strain, the active agent of the biocontrol product AF-X1, in reducing fungal growth and mycotoxin production, on a peanut-based media (PBM) and peanut seeds. The results showed that the decrease in aw, and the shift of T from the optimum of 30°C, led to a reduction in fungal growth. The application of the non-aflatoxigenic strain as biocontrol agent inhibited aflatoxin B1 (AFB1) production under all treatments, up to 55% on PBM and 71% on peanut seeds. The circular economy aspect of the Italian peanut supply chain was dealt within the fifth chapter. Hermetia illucens larvae were reared on safe or fungal-contaminated peanut by-product substrates to assess larval growth performances. Different percentages (0%–100%, step 10%) of two agroindustry by-products (rich by-product, R; poor by-product, P) were mixed and rehydrated to 70% to produce 11 substrates. Starting from these, three trials were performed, and the fungal contamination effect was assessed by inoculating the substrate P5R5 (50% P and 50% R) with two spore suspensions (Aspergillus flavus and Fusarium graminearum, 105 spore/mL). The findings of this work provide evidence that H. illucens larvae may represent a potential way to enhance peanut by-products, even though substrate composition and fungal contamination, especially by A. flavus, may reduce the efficiency of the process.File | Dimensione | Formato | |
---|---|---|---|
TESI_FINALE.pdf
accesso aperto
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/201610
URN:NBN:IT:UNICATT-201610