In the context of dairy farms, feed costs are known to contribute up to 60% of the total cost of production, underscoring the significance of optimizing feed conversion efficiency as a critical strategy for maximizing both the quality and quantity of production, and thereby elevating farm profitability. It is important to note that market fluctuations generate a high degree of uncertainty, exerting a deleterious effect on profits, particularly during periods of declining milk prices and rising raw material costs. To assess the efficiency of production on a national scale, a study was conducted that included 28 representative dairy farms across various Italian regions, which were subjected to five monitoring visits. During these visits, feeding strategy, herd composition, production and reproductive performance, as well as production costs and milk price was collected, and nutritional and economic indices were calculated to evaluate farms in terms of nutritional efficiency and economic sustainability. The accuracy of different nutritional analysis instruments was verified by comparing two NIR spectrophotometers (bench-top and portable) with traditional chemical analysis. The coefficient of determination (R²) and the disaggregation of the mean square error (MSE) in prediction errors were calculated, showing greater accuracy of the bench-top NIR instrument compared to the portable one. Analysis of variance (ANOVA) was applied to the partial and aggregate indices to identify differences between periods and regions, highlighting statistically significant differences between the periods and regions considered (P<0.05) and suggesting that the partial and aggregate indices are not directly comparable in different market conditions and different production systems. New indices were developed, correlating the original nutritional and economic indices with nutritional parameters such as metabolizable energy and metabolizable protein. These demonstrate the potential for supporting the selection of specific diets to improve conversion efficiency and economic sustainability of the farm. To mitigate the impact of market fluctuations, a series of standardization methods were examined, including the producer price index (PPI), classical standardization (Z-score) and min-max normalization. However, none of the three approaches successfully eliminated the statistical differences between periods and regions (P<0.05). In order to improve the accuracy and relevance of the aggregate indices, a multivariate factor analysis (MFA) was developed with the SAS software (version 9.8), recalibrating the indices according to current market conditions and validating them in three different production contexts. This allowed for the simplification of the evaluation of farm performance and facilitated the identification of strengths and critical areas for improvement. However, in order to facilitate a more precise comparison between companies with similar production and market characteristics, the creation of specific databases is necessary. One possible future development is the use of cluster analysis to classify companies into homogeneous groups.
I costi alimentari rappresentano fino al 60% del costo totale della produzione di latte negli allevamenti bovini, rendendo l’ottimizzazione dell’efficienza di conversione degli alimenti una strategia cruciale per migliorare la qualità e la quantità della produzione e incrementare la redditività aziendale. Le fluttuazioni del mercato generano un elevato grado di incertezza, influenzando negativamente i profitti, specialmente nei periodi di calo dei prezzi del latte e di aumento dei costi delle materie prime. Per valutare l’efficienza produttiva su scala nazionale, sono state selezionate 28 aziende lattiero-casearie rappresentative in diverse regioni italiane, sottoposte a cinque visite di monitoraggio, nelle quali sono stati raccolti dati sulla strategia alimentare, sulla composizione della mandria, sulle performance produttive e riproduttive, nonché sui costi di produzione e sul prezzo del latte. Sulla base dei dati raccolti, sono stati calcolati gli indici nutrizionali ed economici per valutare l'azienda in termini di efficienza nutrizionale ed economica. Al fine di verificare l’accuratezza di diversi strumenti di analisi nutrizionale, due spettrofotometri NIR (da banco e portatile) sono stati confrontati con l’analisi chimica tradizionale, calcolando il coefficiente di determinazione (R²) e la disaggregazione dell'errore quadratico medio (MSE) negli errori di previsione, mostrando una maggiore accuratezza dello strumento NIR da banco rispetto a quello portatile. L’analisi della varianza (ANOVA) è stata applicata agli indici parziali e aggregati per identificare eventuali differenze tra periodi e regioni, evidenziando differenze statisticamente significative tra i periodi e le regioni considerati (P<0,05) e suggerendo che gli indici parziali e aggregati non sono direttamente comparabili in diverse condizioni di mercato e diversi sistemi di produzione. Inoltre, sono stati sviluppati nuovi indici che correlano gli indici nutrizionali ed economici originali con parametri nutrizionali quali l'energia metabolizzabile e le proteine metabolizzabili, dimostrando che potrebbero supportare la selezione di diete specifiche per migliorare l'efficienza di conversione e la sostenibilità economica dell'azienda. Per ridurre l’effetto delle fluttuazioni di mercato, sono stati testati diversi metodi di standardizzazione, tra cui l'indice dei prezzi alla produzione (PPI), la standardizzazione classica (valore Z) e la normalizzazione min-max, ma nessuno dei tre approcci è stato in grado di eliminare le differenze statistiche tra periodi e regioni (P<0,05). Per migliorare l'accuratezza e la rilevanza degli indici aggregati, è stata sviluppata un’analisi fattoriale multivariata (MFA) con il software SAS (versione 9.8), ricalibrando gli indici in base alle attuali condizioni di mercato e validandoli in tre differenti contesti produttivi, consentendo di semplificare la valutazione delle prestazioni aziendali e facilitando l’identificazione di punti di forza e criticità. Tuttavia, per garantire un confronto più preciso tra aziende con caratteristiche produttive e di mercato simili, è necessaria la creazione di database specifici. Un possibile sviluppo futuro prevede l’utilizzo dell’analisi dei cluster per classificare le aziende in gruppi omogenei, migliorando ulteriormente la precisione dei confronti e delle strategie di gestione aziendale.
DEVELOPMENT OF AN ADVANCED MONITORING SYSTEM TO IMPROVE NUTRITIONAL EFFICIENCY AND ECONOMIC SUSTAINABILITY OF DAIRY COW FARMS
Masseroni, Mattia
2025
Abstract
In the context of dairy farms, feed costs are known to contribute up to 60% of the total cost of production, underscoring the significance of optimizing feed conversion efficiency as a critical strategy for maximizing both the quality and quantity of production, and thereby elevating farm profitability. It is important to note that market fluctuations generate a high degree of uncertainty, exerting a deleterious effect on profits, particularly during periods of declining milk prices and rising raw material costs. To assess the efficiency of production on a national scale, a study was conducted that included 28 representative dairy farms across various Italian regions, which were subjected to five monitoring visits. During these visits, feeding strategy, herd composition, production and reproductive performance, as well as production costs and milk price was collected, and nutritional and economic indices were calculated to evaluate farms in terms of nutritional efficiency and economic sustainability. The accuracy of different nutritional analysis instruments was verified by comparing two NIR spectrophotometers (bench-top and portable) with traditional chemical analysis. The coefficient of determination (R²) and the disaggregation of the mean square error (MSE) in prediction errors were calculated, showing greater accuracy of the bench-top NIR instrument compared to the portable one. Analysis of variance (ANOVA) was applied to the partial and aggregate indices to identify differences between periods and regions, highlighting statistically significant differences between the periods and regions considered (P<0.05) and suggesting that the partial and aggregate indices are not directly comparable in different market conditions and different production systems. New indices were developed, correlating the original nutritional and economic indices with nutritional parameters such as metabolizable energy and metabolizable protein. These demonstrate the potential for supporting the selection of specific diets to improve conversion efficiency and economic sustainability of the farm. To mitigate the impact of market fluctuations, a series of standardization methods were examined, including the producer price index (PPI), classical standardization (Z-score) and min-max normalization. However, none of the three approaches successfully eliminated the statistical differences between periods and regions (P<0.05). In order to improve the accuracy and relevance of the aggregate indices, a multivariate factor analysis (MFA) was developed with the SAS software (version 9.8), recalibrating the indices according to current market conditions and validating them in three different production contexts. This allowed for the simplification of the evaluation of farm performance and facilitated the identification of strengths and critical areas for improvement. However, in order to facilitate a more precise comparison between companies with similar production and market characteristics, the creation of specific databases is necessary. One possible future development is the use of cluster analysis to classify companies into homogeneous groups.File | Dimensione | Formato | |
---|---|---|---|
tesiphd_completa_Masseroni.pdf
accesso solo da BNCF e BNCR
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/201613
URN:NBN:IT:UNICATT-201613