Excitons, i.e. electron-hole pairs bound by Coulomb attraction, are fundamental excitations in semiconductors and dominate their non-equilibrium optical response. Understanding how excitons are generated, their subsequent relaxation dynamics, and how they interact with other degrees of freedom of the system is therefore mandatory for both fundamental research and the development of technological applications such as optoelectronics and spintronics. Recently, the study of exciton physics has focused on low-dimensional materials, which, following the isolation of graphene from graphite in 2004 by Geim’s group, dominated the research on semiconductor physics. Today, the family of two-dimensional materials encompasses a broad range of compositions that span most elements of the periodic table. This leads to a wide variety of electronic properties, including metals, semimetals, insulators, and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared, including the visible regime. In low-dimensional semiconductors, the reduction of the screening induced by geometrical confinement, along with strong light-matter interaction, makes excitons a promising platform for studying exciton dynamics and many-body interactions. In these materials, excitons are more stable and less influenced by scattering processes, leading to decoherence times longer than those of conventional materials, which are typically on the order of a few tens of femtoseconds. Additionally, the stability of the excitonic resonance, even at room temperature, enables the tracking of the exciton dynamics from the early stages up to a timescale of the order of nanoseconds. The study of exciton physics has focused so far on the exciton formation, exciton-phonon coupling, high-harmonic generation, valley-polarized exciton dynamics, and the formation of Floquet states by light dressing of excitons in low-dimensional materials with complex electronic structures, characterized by the presence of multiple valleys, such as two-dimensional transition metal dichalcogenides. The goal of this thesis is to conduct a systematic study of exciton physics in the layered lead-free semiconductor bismuth tri-iodide (BiI3), with a quasi-direct gap and a rich excitonic landscape where an isolated bright exciton with a Frenkel-like character dominates the optical response. The peculiar structure of BiI3, both in its bulk and in its two-dimensional forms, makes it an ideal material for investigating the role of the environment, such as phonons, defects, and quasi-free carriers, in exciton dynamics, where their presence can be controlled by tuning the experimental conditions. Furthermore, BiI3 allows us to exploit the advantages of low dimensionality, such as enhanced structural stability and long-lived exciton dynamics, while mitigating some of the associated challenges, including complex experimental conditions. Since the dynamics in question occur on sub-nanosecond timescales, ultrafast spectroscopies, both in optics and photoemission, have been employed. All-optical transient spectroscopy is typically used to explore photoinduced relaxation pathways and couplings in semiconductors. A pump and probe scheme, where two pulses are generated by a femtosecond-pulsed laser, is used to photoexcite the material and collect snapshots of the system in the non-equilibrium regime after the photoexcitation. This powerful technique allows for the evolution of the transient signal, such as reflectance, transmittance, or absorption, to be resolved in energy and time, but it does not provide access to the momentum domain. However, time-and angle-resolved photoemission spectroscopy is known for its high momentum resolution and the more straightforward interpretation of the collected signal. By combining these two spectroscopies, a comprehensive characterization of exciton physics has been achieved in this work. This thesis begins with an overview of exciton physics in layered semiconductors, followed by a description of the methods and materials employed. The results are then presented. In chapter 4, the formation of excitons from a quasi-free electron population in the conduction band is investigated using time-resolved angle-resolved photoemission during a beam time at the T-Rex Lab of the Elettra Sincrotrone Trieste. The excitonic signal in photoemission is isolated and traced in the time, energy, and momentum domains. In chapter 5, we explore the manifestation of an excitonic coherent state through transient optical spectroscopy, as well as the transition from the coherent to the incoherent regime. Chapter 6 focuses on many-body interactions between excitons and phonons, as well as between excitons and free carriers. The experimental results are complemented by theoretical predictions, in collaboration with a theoretical group consisting of Jorge Cervantes-Villanueva and Alejandro Molina-Sánchez (University of Valencia), Davide Sangalli (Istituto della Materia-CNR), and Simona Achilli (Università degli studi di Milano). Finally, Chapter 7 presents preliminary results of a powerful experimental technique that combines photoemission with an interferometric approach to directly probe exciton coherence.
Gli eccitoni, ovvero coppie elettrone-lacuna legate dall'attrazione coulombiana, sono eccitazioni fondamentali nei semiconduttori e dominano la loro risposta ottica fuori dall’equilibrio. Comprendere come gli eccitoni vengono generati, la loro dinamica di rilassamento e come interagiscono con gli altri gradi di libertà del sistema è quindi fondamentale sia per la ricerca di base che per lo sviluppo di applicazioni tecnologiche. Recentemente, lo studio della fisica degli eccitoni si è concentrato su materiali a bassa dimensionalità. A partire dall'isolamento del grafene dalla grafite nel 2004, eseguito dal gruppo di Geim, i materiali a bassa dimensionalità hanno dominato il ramo della ricerca sui semiconduttori. Oggi, la famiglia dei materiali bidimensionali comprende un’ampia gamma di combinazioni che coprono la maggior parte degli elementi della tavola periodica. Ciò porta a un’ampia varietà di proprietà elettroniche, che includono metalli, semimetalli, isolanti e semiconduttori diretti o indiretti con band gap che variano dall’ultravioletto all’infrarosso, finestra energetica che comprende lo spettro visibile Nei semiconduttori a bassa dimensionalità, la riduzione dello screening dovuta al confinamento geometrico, insieme alla forte interazione luce-materia, rende gli eccitoni una piattaforma promettente per lo studio della dinamica eccitonica e delle interazioni a molti corpi. In questi materiali, gli eccitoni sono più stabili e meno influenzati da processi di scattering, portando a tempi di decoerenza più lunghi rispetto ai materiali convenzionali, che tipicamente si aggirano nell’ordine di alcune decine di femtosecondi. Inoltre, la stabilità della risonanza eccitonica, anche a temperatura ambiente, permette di tracciare la dinamica eccitonica dalle fasi iniziali fino a scale temporali dell’ordine del nanosecondo. Lo studio della fisica degli eccitoni si è finora concentrato sulla formazione degli eccitoni, l’accoppiamento eccitone-fonone, la generazione di armoniche, la dinamica di eccitoni in materiali aventi valli non degeneri e la formazione di stati di Floquet in materiali a bassa dimensionalità con strutture elettroniche complesse. L’obiettivo di questa tesi è condurre uno studio sistematico della fisica degli eccitoni nel tri-ioduro di bismuto (BiI3), un semiconduttore a layer e privo di piombo nella struttura cristallina. Il BiI3 presenta una gap quasi diretta e un ricco spettro eccitonico. In particolare, la risposta ottica è dominata da una singola risonanza isolata, di tipo Frenkel e bright. La struttura peculiare del BiI₃, sia nella sua forma bulk che in quella bidimensionale, lo rende un materiale ideale per indagare il ruolo dell’ambiente, come fononi, difetti e cariche, nella dinamica eccitonica, dove la loro presenza può essere controllata modulando le condizioni sperimentali. Inoltre, il BiI₃ consente di sfruttare i vantaggi della bassa dimensionalità, come ad esempio una maggiore stabilità strutturale e una dinamica eccitonica di lunga durata, mitigando allo stesso tempo alcune delle sfide associate, tra cui condizioni sperimentali complesse. Poiché le dinamiche in questione avvengono su scale temporali inferiori al nanosecondo, in questo lavoro sono state impiegate spettroscopie ultraveloci, sia ottiche che di fotoemissione. La spettroscopia transiente ottica è solitamente utilizzata per esplorare le dinamiche di rilassamento fotoindotte e gli accoppiamenti nei semiconduttori. Uno schema di tipo pump-probe, in cui due impulsi sono generati da un laser al femtosecondo, viene usato per eccitare il materiale e raccogliere istantanee del sistema nel regime fuori equilibrio. Questa tecnica potente consente di risolvere in energia e tempo l’evoluzione del segnale transiente, come riflettanza, trasmittanza o assorbanza, ma non consente l’accesso al dominio del momento. Al contrario, la spettroscopia di fotoemissione risolta in tempo e angolo è nota per la sua alta risoluzione in momento e per l’interpretazione più diretta del segnale raccolto. Combinando queste due spettroscopie, in questo lavoro è stata ottenuta una caratterizzazione completa della fisica degli eccitoni. La tesi inizia con una panoramica sulla fisica degli eccitoni nei semiconduttori stratificati, seguita da una descrizione dei metodi e dei materiali impiegati. Vengono quindi presentati i risultati. Nel Capitolo 4, la formazione degli eccitoni a partire da una popolazione di elettroni in banda di conduzione viene studiata utilizzando la fotoemissione risolta in tempo e angolo. Le misure dono state raccolte durante un beam time presso il laboratorio T-Rex (Elettra Sincrotrone di Trieste). Il segnale eccitonico nella fotoemissione e stato isolato e tracciato nei domini temporale, energetico e del momento. Nel Capitolo 5, esploriamo la manifestazione di uno stato coerente eccitonico tramite spettroscopia ottica transiente. In più, abbiamo tracciato la transizione dal regime coerente a quello incoerente. Il Capitolo 6 si concentra sulle interazioni tra eccitoni e fononi, nonché tra eccitoni e portatori liberi. I risultati sperimentali sono completati da calcoli teorici, in collaborazione con un gruppo composto da Jorge Cervantes-Villanueva e Alejandro Molina-Sánchez (Università di Valencia), Davide Sangalli (Istituto della Materia-CNR) e Simona Achilli (Università degli Studi di Milano). Infine, il Capitolo 7 presenta risultati preliminari di una potente tecnica sperimentale che combina la fotoemissione con un approccio interferometrico per sondare direttamente la coerenza eccitonica.
EXCITON DYNAMICS IN LAYERED SEMICONDCTORS: INTERACTION EFFECTS ON FORMATION AND RELAXATION
Gosetti, Valentina
2025
Abstract
Excitons, i.e. electron-hole pairs bound by Coulomb attraction, are fundamental excitations in semiconductors and dominate their non-equilibrium optical response. Understanding how excitons are generated, their subsequent relaxation dynamics, and how they interact with other degrees of freedom of the system is therefore mandatory for both fundamental research and the development of technological applications such as optoelectronics and spintronics. Recently, the study of exciton physics has focused on low-dimensional materials, which, following the isolation of graphene from graphite in 2004 by Geim’s group, dominated the research on semiconductor physics. Today, the family of two-dimensional materials encompasses a broad range of compositions that span most elements of the periodic table. This leads to a wide variety of electronic properties, including metals, semimetals, insulators, and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared, including the visible regime. In low-dimensional semiconductors, the reduction of the screening induced by geometrical confinement, along with strong light-matter interaction, makes excitons a promising platform for studying exciton dynamics and many-body interactions. In these materials, excitons are more stable and less influenced by scattering processes, leading to decoherence times longer than those of conventional materials, which are typically on the order of a few tens of femtoseconds. Additionally, the stability of the excitonic resonance, even at room temperature, enables the tracking of the exciton dynamics from the early stages up to a timescale of the order of nanoseconds. The study of exciton physics has focused so far on the exciton formation, exciton-phonon coupling, high-harmonic generation, valley-polarized exciton dynamics, and the formation of Floquet states by light dressing of excitons in low-dimensional materials with complex electronic structures, characterized by the presence of multiple valleys, such as two-dimensional transition metal dichalcogenides. The goal of this thesis is to conduct a systematic study of exciton physics in the layered lead-free semiconductor bismuth tri-iodide (BiI3), with a quasi-direct gap and a rich excitonic landscape where an isolated bright exciton with a Frenkel-like character dominates the optical response. The peculiar structure of BiI3, both in its bulk and in its two-dimensional forms, makes it an ideal material for investigating the role of the environment, such as phonons, defects, and quasi-free carriers, in exciton dynamics, where their presence can be controlled by tuning the experimental conditions. Furthermore, BiI3 allows us to exploit the advantages of low dimensionality, such as enhanced structural stability and long-lived exciton dynamics, while mitigating some of the associated challenges, including complex experimental conditions. Since the dynamics in question occur on sub-nanosecond timescales, ultrafast spectroscopies, both in optics and photoemission, have been employed. All-optical transient spectroscopy is typically used to explore photoinduced relaxation pathways and couplings in semiconductors. A pump and probe scheme, where two pulses are generated by a femtosecond-pulsed laser, is used to photoexcite the material and collect snapshots of the system in the non-equilibrium regime after the photoexcitation. This powerful technique allows for the evolution of the transient signal, such as reflectance, transmittance, or absorption, to be resolved in energy and time, but it does not provide access to the momentum domain. However, time-and angle-resolved photoemission spectroscopy is known for its high momentum resolution and the more straightforward interpretation of the collected signal. By combining these two spectroscopies, a comprehensive characterization of exciton physics has been achieved in this work. This thesis begins with an overview of exciton physics in layered semiconductors, followed by a description of the methods and materials employed. The results are then presented. In chapter 4, the formation of excitons from a quasi-free electron population in the conduction band is investigated using time-resolved angle-resolved photoemission during a beam time at the T-Rex Lab of the Elettra Sincrotrone Trieste. The excitonic signal in photoemission is isolated and traced in the time, energy, and momentum domains. In chapter 5, we explore the manifestation of an excitonic coherent state through transient optical spectroscopy, as well as the transition from the coherent to the incoherent regime. Chapter 6 focuses on many-body interactions between excitons and phonons, as well as between excitons and free carriers. The experimental results are complemented by theoretical predictions, in collaboration with a theoretical group consisting of Jorge Cervantes-Villanueva and Alejandro Molina-Sánchez (University of Valencia), Davide Sangalli (Istituto della Materia-CNR), and Simona Achilli (Università degli studi di Milano). Finally, Chapter 7 presents preliminary results of a powerful experimental technique that combines photoemission with an interferometric approach to directly probe exciton coherence.File | Dimensione | Formato | |
---|---|---|---|
TesiPhD_completa_Gosetti.pdf
accesso aperto
Dimensione
4.02 MB
Formato
Adobe PDF
|
4.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202253
URN:NBN:IT:UNICATT-202253