Nanophotonics is a field of optics that explores the properties of light at nanometer scales and its interaction with objects of sub-wavelength dimensions. Initially, nanophotonic devices were predominantly made of metals, exploiting plasmonics processes, but their high losses and heating issues reduced interest in these materials. In recent years, dielectric materials such as Si, Ge, and GaAs have emerged as promising alternatives for fabricating sub-wavelength objects. These materials exhibit similar optical properties to plasmonic materials but without high absorption and losses, making them suitable for integration into optoelectronic and other photonic elements. Dielectric nanostructures exhibit multiple electric and magnetic Mie resonances, allowing for the manipulation of incoming radiation through scattering, redirection, field confinement, and control of phase and amplitude. Metasurfaces, engineered planar structures composed of dielectric nanoparticles, combine all these properties, enabling enhanced light control and higher quality factors compared to individual dielectric nanostructures. The combination of nanophotonics with metasurfaces and metamaterials has given rise to the field of metaphotonics. By exploiting light-matter interaction at the nanoscale and the engineered layout of metamaterials, metaphotonic platforms can achieve unprecedented optical responses. The interaction between different single nanostructures within the same ensemble leads to the realization of complex devices, despite the challenges in their design and fabrication. The concept of metaphotonics has recently extended to include bound states in the continuum, localized energy states within the continuous spectrum of radiating waves. BICs offer large quality factors in single resonators and metasurfaces, surpassing Mie resonances. The thesis starts by focusing on the optical properties of SiGe Mie resonators fabricated through solid-state dewetting, a low cost self-assembly method. Then it describes a selective polarization controller based on bound states in the continuum, fabricated using electron beam lithography. This device demonstrates unprecedented results compared to other dielectric metamaterials.
La nanofotonica è un campo dell'ottica che esplora le proprietà della luce a scala nanometrica e la sua interazione con oggetti di dimensioni inferiore alla lunghezza d’onda incidente. Inizialmente, i dispositivi nanofotonici erano principalmente realizzati in metallo, sfruttando processi plasmonici, ma le loro elevate perdite e problemi di surriscaldamento hanno ridotto l'interesse per questi materiali. Negli ultimi anni, materiali dielettrici come Si, Ge e GaAs sono emersi come promettenti alternative per la fabbricazione di oggetti inferiori alla lunghezza d’onda. Questi materiali presentano proprietà ottiche simili a quelle dei materiali plasmonici, ma senza elevati assorbimenti e perdite, rendendoli adatti all'integrazione in elementi optoelettronici e fotonici. Le nanostrutture dielettriche presentano molteplici risonanze elettriche e magnetiche di Mie, consentendo la manipolazione della radiazione in ingresso attraverso dispersione, direzionamento, confinamento del campo e controllo di fase e ampiezza. Le metasuperfici, strutture planari ingegnerizzate composte da nanoparticelle dielettriche, combinano tutte queste proprietà, consentendo un controllo della luce migliorato e fattori di qualità più elevati rispetto alle singole nanostrutture dielettriche. La combinazione di nanofotonica con metasuperfici e metamateriali ha dato origine al campo della metafotonica. Sfruttando l'interazione luce-materia a scala nanometrica e la disposizione ingegnerizzata dei metamateriali, le piattaforme metafotoniche possono ottenere risposte ottiche senza precedenti. L'interazione tra diverse nanostrutture singole all'interno dello stesso insieme porta alla realizzazione di dispositivi complessi, nonostante le sfide nella progettazione e nella fabbricazione. Il concetto di metafotonica si è esteso di recente includendo i bound states in the continuum, stati energetici localizzati all'interno dello spettro continuo delle onde radianti. Questi stati offrono elevati fattori di qualità in singoli risonatori e metasuperfici, superando le risonanze di Mie. La tesi inizia concentrandosi sulle proprietà ottiche dei risonatori di SiGe Mie fabbricati tramite solid-state dewetting, un metodo di auto-assemblaggio a basso costo. Successivamente, introduce dettagliatamente il concetto di controllore di polarizzazione selettivo basato sulla fisica dei bound states, fabbricato utilizzando litografia a fascio di elettroni. Questo dispositivo dimostra risultati senza precedenti rispetto ad altri metamateriali dielettrici.
Fabrication and characterization of all-dielectric nanostructures : from dewetted nanoislands to BICs based devices
LUCA, FAGIANI
2023
Abstract
Nanophotonics is a field of optics that explores the properties of light at nanometer scales and its interaction with objects of sub-wavelength dimensions. Initially, nanophotonic devices were predominantly made of metals, exploiting plasmonics processes, but their high losses and heating issues reduced interest in these materials. In recent years, dielectric materials such as Si, Ge, and GaAs have emerged as promising alternatives for fabricating sub-wavelength objects. These materials exhibit similar optical properties to plasmonic materials but without high absorption and losses, making them suitable for integration into optoelectronic and other photonic elements. Dielectric nanostructures exhibit multiple electric and magnetic Mie resonances, allowing for the manipulation of incoming radiation through scattering, redirection, field confinement, and control of phase and amplitude. Metasurfaces, engineered planar structures composed of dielectric nanoparticles, combine all these properties, enabling enhanced light control and higher quality factors compared to individual dielectric nanostructures. The combination of nanophotonics with metasurfaces and metamaterials has given rise to the field of metaphotonics. By exploiting light-matter interaction at the nanoscale and the engineered layout of metamaterials, metaphotonic platforms can achieve unprecedented optical responses. The interaction between different single nanostructures within the same ensemble leads to the realization of complex devices, despite the challenges in their design and fabrication. The concept of metaphotonics has recently extended to include bound states in the continuum, localized energy states within the continuous spectrum of radiating waves. BICs offer large quality factors in single resonators and metasurfaces, surpassing Mie resonances. The thesis starts by focusing on the optical properties of SiGe Mie resonators fabricated through solid-state dewetting, a low cost self-assembly method. Then it describes a selective polarization controller based on bound states in the continuum, fabricated using electron beam lithography. This device demonstrates unprecedented results compared to other dielectric metamaterials.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis_FinalVersion_Fagiani.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
19.61 MB
Formato
Adobe PDF
|
19.61 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/203431
URN:NBN:IT:POLIMI-203431