In the framework of electronics component manufacturing, additive technologies (more popularly known as 3D printing techniques) are gaining a growing importance year by year. These techniques, thanks to their properties of implementation easiness, fabrication speed, amount of required material and limited energy consumption, are of great interest when compared to standard subtractive technologies. Printed electronic devices performances noticeably improved in recent years and, unlike standard "rigid" electronics, they are characterized by compatibility with flexible applications and roll-to-roll processes. Among passive components manufacturing through additive techniques, the production of high quality micrometric integrated inductors can be of great interest in different contexts. Standard inductors could be created through electrochemical processes, but they imply a lot of wastes and high costs to reach conductor thickness of relevance to obtain high quality. Shifting to inkjet printing is of great interest for such purpose, because conductor thickness can be increased by simply depositing more layers. However, such technique requires conductive ink with high conductivity, micrometric and stable accuracy in deposition and low temperature treatments. In this dissertation, an innovative printing methodology is proposed to obtain high quality factor micrometric silver inductors, according to specifications compliant with Galvanic Isolators applications in Very High Frequency range. Conductive ink was deposited onto polyimide substrates with piezoelectric Drop-On-Demand (D.O.D) inkjet printing. The employed tool, a “All-in-one State-of-the-Art” device, enabled to both customize deposition trajectories and to keep a micrometric deposition accuracy in hours of activity, required to print up to 30 layers. Printings became conductive after an annealing treatment, at temperatures noticeably lower than the standard electronic processes ones ( below 250 °C). Finally, a process to connect pads on a top metal layer with printed inductors on a bottom metal layer was successfully implemented, by allowing VHF-measurements to be performed. Optimization of these process can be of interest for microelectronics manufacturing and for the integration of printed components with standard circuits.
Le tecnologie additive, (più note come tecniche di stampa 3D) stanno acquistando un'importanza crescente di ano in anno nella manifattura di componenti elettroniche. Queste tecniche sono di grande interesse rispetto alle standard tecnologie sottrattive, grazie alle loro proprietà di facilità di implementazione, velocità di fabbricazione, quantità di materiale richiesta e consumo energetico limitato. Le prestazioni dei dispositivi elettronici stampati sono notevolmente migliorate negli ultimi anni e, a differenze dell' "elettronica rigida", sono caratterizzati da compatibilità con applicazioni flessibili e processi roll-to-roll. La produzione di induttori integrati micrometrici di alta qualità, tra le componenti passive fabbricate con tecniche additive, può essere di grande interesse in diversi contesti. Induttori standard possono essere creati con processi elettro-chimici, ma essi implicano molti rifiuti e alti costi per raggiungere uno spessore di conduttore rilevante per ottenere alta qualità. Utilizzare la stampa a getto d'inchiostro può essere di grande interesse per tale fine, perché lo spessore del conduttore può essere semplicemente aumentato depositando più strati. Tuttavia tale tecnica richiede inchiostri conduttivi con alta conducibilità, accuratezza micrometrica e stabile nella deposizione e processi a bassa temperatura. In questa dissertazione è proposta un innovativa metodologia di stampa per ottenere induttori micrometrici d'argento di alta qualità, conformi a specifiche per applicazioni con Isolatori Galavanici nell'intervallo di frequenze Very High Frequency. Inchiostro conduttivo è stato depositato su substrati di poliimmide con stampa a getto d'inchiostro piezoelettrica a singola goccia (Drop-On-Demand, D.O.D). Il dispositivo utilizzato, uno strumento "All-in-one-State-of-The-Art", ha concesso sia di personalizzare traiettorie di deposizione che di mantenere un'accuratezza micrometrica di deposizione in ore di attività, richiesta per stampare fino a 30 strati. Le stampe sono diventate conduttive dopo un trattamento di sinterizzazione, a temperature notevolmente inferiori rispetto a quelle dei tipi processi di elettronica (inferiori a 250 °C). Infine è stato implementato un processo per connettere pad su uno strato metallico superiore con induttori stampati su uno strato metallico inferiore, consentendo di eseguire misure VHF. L'ottimizzazione di questi processi può essere di interesse nella manifattura microelettronica e per l'integrazione di componenti stampati con circuiti standard.
Innovative D.O.D. printing for micrometric inductors
GIUSEPPE, BARBALACE
2023
Abstract
In the framework of electronics component manufacturing, additive technologies (more popularly known as 3D printing techniques) are gaining a growing importance year by year. These techniques, thanks to their properties of implementation easiness, fabrication speed, amount of required material and limited energy consumption, are of great interest when compared to standard subtractive technologies. Printed electronic devices performances noticeably improved in recent years and, unlike standard "rigid" electronics, they are characterized by compatibility with flexible applications and roll-to-roll processes. Among passive components manufacturing through additive techniques, the production of high quality micrometric integrated inductors can be of great interest in different contexts. Standard inductors could be created through electrochemical processes, but they imply a lot of wastes and high costs to reach conductor thickness of relevance to obtain high quality. Shifting to inkjet printing is of great interest for such purpose, because conductor thickness can be increased by simply depositing more layers. However, such technique requires conductive ink with high conductivity, micrometric and stable accuracy in deposition and low temperature treatments. In this dissertation, an innovative printing methodology is proposed to obtain high quality factor micrometric silver inductors, according to specifications compliant with Galvanic Isolators applications in Very High Frequency range. Conductive ink was deposited onto polyimide substrates with piezoelectric Drop-On-Demand (D.O.D) inkjet printing. The employed tool, a “All-in-one State-of-the-Art” device, enabled to both customize deposition trajectories and to keep a micrometric deposition accuracy in hours of activity, required to print up to 30 layers. Printings became conductive after an annealing treatment, at temperatures noticeably lower than the standard electronic processes ones ( below 250 °C). Finally, a process to connect pads on a top metal layer with printed inductors on a bottom metal layer was successfully implemented, by allowing VHF-measurements to be performed. Optimization of these process can be of interest for microelectronics manufacturing and for the integration of printed components with standard circuits.File | Dimensione | Formato | |
---|---|---|---|
Barbalace_InnovativeDODPrintingForMicrometricInductors.pdf
accesso solo da BNCF e BNCR
Dimensione
4.18 MB
Formato
Adobe PDF
|
4.18 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/204363
URN:NBN:IT:POLIMI-204363