Sustainable harnessing of natural resources is key moving towards new-generation electronics, that feature a unique combination of electronic functionality, low cost, and absence of environmental and health hazards. Within this framework, the idea of making electronics edible is a radical approach aiming at offering new opportunities for biomedicine, pharmaceuticals, and food industry. Going past the traditional model of electronic devices, edible electronics exploit the inherent electronic properties of food, food-derived or edible synthetic materials for the development of functional electronic components and systems that can be safely ingested, and subsequently digested after accomplishing their task. This dissertation represents a coordinated interdisciplinary effort towards the development of innovative edible transistors and circuits as fundamental electronic components providing computation and control functionalities. Four experimental sections of the work represent independent, but mutually reinforcing studies addressing the most critical steps of the devices’ realization, starting from the selection and optimization of functional edible materials up to the design and fabrication of the final edible transistors. In particular, an inherently safe and nutritive compound of ionic nature, honey, is proposed as an effective gating media for realization of air-stable complementary organic transistors and circuits operating at low voltage (< 1 V) while featuring other distinctive electronic and sensing functionalities. With the aim to target large-area, scalable, solution-processable and cost-effective edible electronics, we further introduce inkjet-printing as a primary technique for patterning gold edible electrodes. The versatility of the approach and compatibility of inkjet-printed gold with various flexible substrates open broad opportunities not only for edible electronics, but also for other areas of research, such as organic bioelectronics. Next, we propose chitosan, an edible and nutritive polysaccharide, mainly obtained from shrimp and crab shells, as a solid-state electrolytic gate dielectric for realization of fully printed Chitosan-gated transistors. The devices demonstrate remarkable operating stability in air and mechanical robustness in combination with low-voltage operation (< 1 V), that opens opportunities for realization of fully printed complementary edible electronic circuitry. In the final section of the dissertation, I explore the potential of employing copper phthalocyanine, a cosmetic pigment found in toothpastes, as a semiconductor for the development of the fully edible electrolyte-gated devices. Overall, the obtained results represent a fundamental advancement in the field of edible electronics and prove the feasibility of rather exotic electronic devices, challenging common thinking.
Lo sfruttamento sostenibile delle risorse naturali è fondamentale per avvicinarsi all'elettronica di nuova generazione, caratterizzata da una combinazione unica di funzionalità elettronica, basso costo e assenza di rischi per l'ambiente e la salute. In questo quadro, l'idea di rendere commestibile l'elettronica è un approccio radicale volto a offrire nuove opportunità per la biomedicina, i prodotti farmaceutici e l'industria alimentare. Superando il modello tradizionale dei dispositivi elettronici, l'elettronica commestibile sfrutta le proprietà elettroniche intrinseche del cibo, dei materiali sintetici derivati dagli alimenti o commestibili per lo sviluppo di componenti e sistemi elettronici funzionali che possono essere ingeriti in sicurezza e successivamente digeriti dopo aver svolto il loro compito. Questa tesi rappresenta uno sforzo interdisciplinare coordinato verso lo sviluppo di transistor e circuiti commestibili innovativi come componenti elettronici fondamentali che forniscono funzionalità di calcolo e controllo. Quattro sezioni sperimentali del lavoro rappresentano studi indipendenti, ma che si rafforzano a vicenda, che affrontano le fasi più critiche della realizzazione dei dispositivi, a partire dalla selezione e ottimizzazione di materiali edibili funzionali fino alla progettazione e fabbricazione dei transistor edibili finali. In particolare, un composto intrinsecamente sicuro e nutritivo di natura ionica, il miele, viene proposto come mezzo di gating efficace per la realizzazione di transistor e circuiti organici complementari stabili all'aria che funzionano a bassa tensione (< 1 V) pur presentando altre funzionalità elettroniche e di rilevamento distintive . Con l'obiettivo di puntare all'elettronica commestibile di grandi dimensioni, scalabile, elaborabile con soluzioni ed economicamente vantaggiosa, introduciamo ulteriormente la stampa a getto d'inchiostro come tecnica primaria per modellare elettrodi commestibili d'oro. La versatilità dell'approccio e la compatibilità dell'oro stampato a getto d'inchiostro con vari substrati flessibili aprono ampie opportunità non solo per l'elettronica commestibile, ma anche per altre aree di ricerca, come la bioelettronica organica. Successivamente, proponiamo il chitosano, un polisaccaride commestibile e nutritivo, ottenuto principalmente da gamberetti e gusci di granchio, come dielettrico di gate elettrolitico a stato solido per la realizzazione di transistor Chitosan-gated completamente stampati. I dispositivi dimostrano una notevole stabilità operativa in aria e robustezza meccanica in combinazione con il funzionamento a bassa tensione (< 1 V), che apre opportunità per la realizzazione di circuiti elettronici commestibili complementari completamente stampati. Nella sezione finale della tesi, esplorerò il potenziale dell'impiego della ftalocianina di rame, un pigmento cosmetico presente nei dentifrici, come semiconduttore per lo sviluppo di dispositivi completamente commestibili con elettrolita. Nel complesso, i risultati ottenuti rappresentano un progresso fondamentale nel campo dell'elettronica commestibile e dimostrano la fattibilità di dispositivi elettronici piuttosto esotici, sfidando il pensiero comune.
Edible organic transistors and circuits operating at low voltage
Alina, Sharova
2022
Abstract
Sustainable harnessing of natural resources is key moving towards new-generation electronics, that feature a unique combination of electronic functionality, low cost, and absence of environmental and health hazards. Within this framework, the idea of making electronics edible is a radical approach aiming at offering new opportunities for biomedicine, pharmaceuticals, and food industry. Going past the traditional model of electronic devices, edible electronics exploit the inherent electronic properties of food, food-derived or edible synthetic materials for the development of functional electronic components and systems that can be safely ingested, and subsequently digested after accomplishing their task. This dissertation represents a coordinated interdisciplinary effort towards the development of innovative edible transistors and circuits as fundamental electronic components providing computation and control functionalities. Four experimental sections of the work represent independent, but mutually reinforcing studies addressing the most critical steps of the devices’ realization, starting from the selection and optimization of functional edible materials up to the design and fabrication of the final edible transistors. In particular, an inherently safe and nutritive compound of ionic nature, honey, is proposed as an effective gating media for realization of air-stable complementary organic transistors and circuits operating at low voltage (< 1 V) while featuring other distinctive electronic and sensing functionalities. With the aim to target large-area, scalable, solution-processable and cost-effective edible electronics, we further introduce inkjet-printing as a primary technique for patterning gold edible electrodes. The versatility of the approach and compatibility of inkjet-printed gold with various flexible substrates open broad opportunities not only for edible electronics, but also for other areas of research, such as organic bioelectronics. Next, we propose chitosan, an edible and nutritive polysaccharide, mainly obtained from shrimp and crab shells, as a solid-state electrolytic gate dielectric for realization of fully printed Chitosan-gated transistors. The devices demonstrate remarkable operating stability in air and mechanical robustness in combination with low-voltage operation (< 1 V), that opens opportunities for realization of fully printed complementary edible electronic circuitry. In the final section of the dissertation, I explore the potential of employing copper phthalocyanine, a cosmetic pigment found in toothpastes, as a semiconductor for the development of the fully edible electrolyte-gated devices. Overall, the obtained results represent a fundamental advancement in the field of edible electronics and prove the feasibility of rather exotic electronic devices, challenging common thinking.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Alina Sharova.pdf
accesso solo da BNCF e BNCR
Dimensione
8.55 MB
Formato
Adobe PDF
|
8.55 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/204835
URN:NBN:IT:POLIMI-204835