In the last decades the CO2 concentration in the atmosphere is exponentially increasing, with CO2 being the major greenhouse gas responsible of global warming. This increase is caused by the imbalance of the natural carbon cycle, caused by the anthropogenic activities: hydrocarbons are being used much faster than the speed at which CO2 is reduced back to them by natural photosynthesis and fossilization. Hence, governments are making pacts and adopting policies to achieve carbon neutrality (e.g., 2021 Glasgow Climate Pact). In this view the use of the CO2 produced by processes that are difficult to replace and for the transition from some fossil sources to renewables is a promising route to cut the net CO2 emissions. In this context, the reverse water-gas shift (RWGS) reaction and Methane Dry Reforming (MDR) are effective ways to achieve this goal, producing CO and syngas (H2+CO), fundamental building-blocks of the chemical industry. Moreover, MDR is an attractive route for the use of Biogas that is mainly made of CH4 and CO2. In this view, in this PhD work, the kinetic mechanism of the reverse water-gas shift (RWGS) reaction on 4 wt.% Rh/α-Al2O3 and on 4 wt.% Pt/α-Al2O3 are investigated, in a wide range of operating conditions (i.e., temperature, concentrations of the reactants, concentrations of the products in the feed) at ambient absolute pressure. The combination of kinetic data and spectroscopic data obtained with different techniques allowed to produce a kinetic mechanism that considers the observations made at different scales of the activity of the catalysts. Moreover, the role of co-reactant in the carbon formation during CO2 activation by means of methane is investigated by means of a microkinetic model analysis of experimental data. The microkinetic model developed by Maestri et al. for the description of C1 reactions on 4 wt.% Rh/α-Al2O3 is refined to improve the operative conditions range. Then a microkinetic analysis of the role of intermediates in carbon formation is made, with a focus on the role of the co-reactant to methane ratio and the effect of the nature of the co-reactant. All in all, this work paves the way towards the better understanding of kinetic aspects of these CO2 activation processes, paving the way towards the design of new more efficient catalysts.
Negli ultimi decenni la concentrazione di CO2 nell’atmosfera sta aumentando esponenzialmente, essendo la CO2 il principale gas serra responsabile del riscaldamento globale. Questo aumento è causato dallo squilibrio del ciclo naturale del carbonio, causato dalle attività antropiche: gli idrocarburi vengono utilizzati molto più velocemente della velocità con cui la CO2 viene ridotta ad essi dalla fotosintesi naturale e dalla fossilizzazione. Pertanto, i governi stanno stringendo patti e adottando politiche per raggiungere la neutralità del carbonio (e.g, Glasglow Climate Pact del 2021). In quest’ottica l’utilizzo della CO2 prodotta da processi difficilmente sostituibili e per la transizione da processi che utilizzano fonti fossili a processi che utilizzano energie rinnovabili rappresenta una strada promettente per ridurre le emissioni nette di CO2. In questo contesto, la reazione di reverse water-gas shift (RWGS) e il dry reforming di metano (MDR) rappresentano metodi efficaci per raggiungere questo obiettivo, producendo CO e syngas (H2+CO), elementi fondamentali dell’industria chimica. Inoltre, l’MDR è un percorso interessante per l’utilizzo del biogas che è costituito principalmente da CH4 e CO2. In quest'ottica, in questo lavoro di dottorato, vengono studiati i meccanismi cinetici della reverse water-gas shift su 4% Rh/α-Al2O3 e su 4% Pt/α-Al2O3, in un ampio intervallo di condizioni operative (temperatura, concentrazioni dei reagenti, concentrazioni dei prodotti nell'alimentazione) a pressione ambiente. La combinazione di dati cinetici e dati spettroscopici ottenuti con diverse tecniche ha permesso di produrre un meccanismo cinetico che considera le osservazioni fatte a diverse scale dell'attività dei catalizzatori. Inoltre, il ruolo del co-reagente nella formazione del carbonio durante l'attivazione della CO2 mediante metano viene studiato mediante l'analisi di dati sperimentali attraverso un modello microcinetico. Il modello microcinetico sviluppato da Maestri et al. per la descrizione delle reazioni C1 su 4% Rh/α-Al2O3 è perfezionato per migliorare l'intervallo delle condizioni operative. Quindi viene effettuata un'analisi microcinetica del ruolo degli intermedi nella formazione del carbonio, con particolare attenzione al ruolo del rapporto coreagente/metano e all'effetto della natura del coreagente. Questo lavoro apre la strada verso una migliore comprensione degli aspetti cinetici di questi processi di attivazione della CO2, nell'ottica della progettazione di nuovi catalizzatori più efficienti.
Microkinetic and mechanistic analysis of the CO2 activation on Rh and Pt surfaces
LUCA, NARDI
2023
Abstract
In the last decades the CO2 concentration in the atmosphere is exponentially increasing, with CO2 being the major greenhouse gas responsible of global warming. This increase is caused by the imbalance of the natural carbon cycle, caused by the anthropogenic activities: hydrocarbons are being used much faster than the speed at which CO2 is reduced back to them by natural photosynthesis and fossilization. Hence, governments are making pacts and adopting policies to achieve carbon neutrality (e.g., 2021 Glasgow Climate Pact). In this view the use of the CO2 produced by processes that are difficult to replace and for the transition from some fossil sources to renewables is a promising route to cut the net CO2 emissions. In this context, the reverse water-gas shift (RWGS) reaction and Methane Dry Reforming (MDR) are effective ways to achieve this goal, producing CO and syngas (H2+CO), fundamental building-blocks of the chemical industry. Moreover, MDR is an attractive route for the use of Biogas that is mainly made of CH4 and CO2. In this view, in this PhD work, the kinetic mechanism of the reverse water-gas shift (RWGS) reaction on 4 wt.% Rh/α-Al2O3 and on 4 wt.% Pt/α-Al2O3 are investigated, in a wide range of operating conditions (i.e., temperature, concentrations of the reactants, concentrations of the products in the feed) at ambient absolute pressure. The combination of kinetic data and spectroscopic data obtained with different techniques allowed to produce a kinetic mechanism that considers the observations made at different scales of the activity of the catalysts. Moreover, the role of co-reactant in the carbon formation during CO2 activation by means of methane is investigated by means of a microkinetic model analysis of experimental data. The microkinetic model developed by Maestri et al. for the description of C1 reactions on 4 wt.% Rh/α-Al2O3 is refined to improve the operative conditions range. Then a microkinetic analysis of the role of intermediates in carbon formation is made, with a focus on the role of the co-reactant to methane ratio and the effect of the nature of the co-reactant. All in all, this work paves the way towards the better understanding of kinetic aspects of these CO2 activation processes, paving the way towards the design of new more efficient catalysts.| File | Dimensione | Formato | |
|---|---|---|---|
|
Nardi_Luca_Thesis_V4.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205153
URN:NBN:IT:POLIMI-205153