In the last years, research on 3D bioprinting has been gaining attention thanks to its potential for regenerative medicine and the production of biological models for high throughput studies. By combining approaches of tissue engineering and additive manufacturing, this technique aims at replicating complex three-dimensional tissues and organs similar to the physiological ones by spatially depositing in a defined manner a bioink composed of cells and polymers in the hydrogel form. Despite the great potentialities, some technical challenges still need to be addressed. Among those, a crucial issue is to create a bioink formulation that can ensure replicability and reproducibility of the process, as well as good biocompatibility for cell encapsulation. Within this context, thermoresponsive polymers are being introduced for 4D bioprinting applications because of their advantages, such as physical crosslinking and the possibility of responding to external stimuli, as native tissues are capable of. Here a PEG-based formulation of a synthetic thermoresponsive bioink that shows high reproducibility and good control over the properties in the synthesis obtained via RAFT polymerization is presented, as well as good printability properties assessed through in situ imaging thanks to a sol/gel transition temperature adjusted to the environmental one. In addition, the thermoresponsive properties of this polymer enable cell retrieval after incubation. At the same time, even though cells are a crucial component in 3D bioprinting, assessing their correct positioning within the constructs while printing is challenging due to their micrometric size and transparency. However, it is pivotal to understand whether the construct has a good chance of developing into a high-quality construct after incubation or if it is defective and should be discarded. In this work, fluorescent nanoparticles were synthesized and used to understand cell positioning within bioprinted constructs in different applications. On the one hand, they were used to label cells in a proof-of-concept system to monitor in-line cell distribution in extrusion-based 3D bioprinted construct. On the other hand, they were used as part of an alternative cell viability assay and to discriminate between different cell types in multicellular bioprinting.
Negli ultimi anni, la ricerca sul 3D bioprinting ha attirato una crescente attenzione grazie al suo potenziale per la medicina rigenerativa e la produzione di modelli biologici per studi high-throughput. Unendo approcci di ingegneria tissutale e manifattura additiva, questa tecnica mira a replicare tessuti e organi tridimensionali complessi simili a quelli fisiologici, depositando in modo spazialmente definito un bioinchiostro (bioink) composto da cellule e polimeri in forma di idrogel. Nonostante le grandi potenzialità, alcune sfide a livello tecnico devono ancora essere affrontate. Tra queste, una è la formulazione di un bioink in grado di garantire la replicabilità e riproducibilità del processo di stampa, così come una buona biocompatibilità e proprietà adatte all’incapsulamento cellulare. In questo contesto, in letteratura è stato proposto l’uso di polimeri termoresponsivi per applicazioni di 4D bioprinting per i loro vantaggi, come la reticolazione fisica e la possibilità di rispondere a stimoli esterni, capacità propria dei tessuti reali. In questo lavoro viene presentata una formulazione di un bioink sintetico e termoresponsivo a base di PEG, che mostra elevata riproducibilità e buon controllo delle proprietà grazie alla sintesi ottenuta mediante polimerizzazione RAFT, nonché buone proprietà di stampabilità, valutate attraverso il monitoraggio in situ nel visibile, ottenute grazie a una temperatura di transizione sol/gel adattata a quella dell’ambiente circostante. Inoltre, le proprietà termoresponsive di questo polimero permettono se necessario il recupero delle cellule dal costrutto dopo l’incubazione. Allo stesso tempo, anche se le cellule sono una componente fondamentale del 3D bioprinting, valutare il loro corretto posizionamento all’interno dei costrutti durante la stampa è difficile a causa della loro trasparenza e le loro dimensioni micrometriche. Tuttavia, è fondamentale capire se il costrutto ha buone possibilità di evolvere in un costrutto di alta qualità dopo l’incubazione o se presenta degli errori, dovendo quindi essere scartato. In questo lavoro, nanoparticelle fluorescenti sono state sintetizzate e utilizzate per identificare il posizionamento delle cellule all’interno di costrutti biostampati in diversi contesti. Da un lato, sono state impiegate per marcare le cellule in un prototipo di sistema di monitoraggio per valutare in linea la distribuzione delle cellule in costrutti ottenuti tramite 3D bioprinting ad estrusione. Dall’altro, sono state utilizzate come parte di un saggio di vitalità alternativo e per discriminare il corretto posizionamento di diversi tipi cellulari nella stampa di costrutti multicellulari.
A combined approach of in situ monitoring and polymer synthesis for 3D bioprinting applications
Silvia, Santoni
2023
Abstract
In the last years, research on 3D bioprinting has been gaining attention thanks to its potential for regenerative medicine and the production of biological models for high throughput studies. By combining approaches of tissue engineering and additive manufacturing, this technique aims at replicating complex three-dimensional tissues and organs similar to the physiological ones by spatially depositing in a defined manner a bioink composed of cells and polymers in the hydrogel form. Despite the great potentialities, some technical challenges still need to be addressed. Among those, a crucial issue is to create a bioink formulation that can ensure replicability and reproducibility of the process, as well as good biocompatibility for cell encapsulation. Within this context, thermoresponsive polymers are being introduced for 4D bioprinting applications because of their advantages, such as physical crosslinking and the possibility of responding to external stimuli, as native tissues are capable of. Here a PEG-based formulation of a synthetic thermoresponsive bioink that shows high reproducibility and good control over the properties in the synthesis obtained via RAFT polymerization is presented, as well as good printability properties assessed through in situ imaging thanks to a sol/gel transition temperature adjusted to the environmental one. In addition, the thermoresponsive properties of this polymer enable cell retrieval after incubation. At the same time, even though cells are a crucial component in 3D bioprinting, assessing their correct positioning within the constructs while printing is challenging due to their micrometric size and transparency. However, it is pivotal to understand whether the construct has a good chance of developing into a high-quality construct after incubation or if it is defective and should be discarded. In this work, fluorescent nanoparticles were synthesized and used to understand cell positioning within bioprinted constructs in different applications. On the one hand, they were used to label cells in a proof-of-concept system to monitor in-line cell distribution in extrusion-based 3D bioprinted construct. On the other hand, they were used as part of an alternative cell viability assay and to discriminate between different cell types in multicellular bioprinting.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD thesis - Santoni.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
10.76 MB
Formato
Adobe PDF
|
10.76 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205156
URN:NBN:IT:POLIMI-205156