For fifty years, we have been facing climate change without precedents, but it is only for ten years that public opinion is aware of the real consequences of what is happening and that the time is shortening. We need to act before it will be too late. The exploitation of alternative renewable energy sources and carbon sources (such as carbon dioxide) emerges among the new challenges that chemical and industrial engineering is meeting. In parallel, economic growth and emerging economic systems are staved of energy and liquid oils. These two factors fuel the demand for energy and bulk chemical. Thus, now we must figure out feasible alternatives to fossil sources-to-energy/chemicals to satisfy the increasing demand. Economic growth brings wellness, but the dark side of this phenomenon is pollution which is the direct child of unsustainable development. The carbon dioxide accumulation and the global temperature increase are effects of these economic models we are pursuing. The Carbon Capture and Sequestration (CCS) was the first attempt to respond to the emissions reduction in the 1970s. The demand for urgent solutions to mitigate faster and faster the problem of greenhouse gases emissions and the level of technological readiness drive the renewed interest in the CCS despite the only capture has huge energy penalties, and it does not provide any valuable by-product. This makes it less appealing. Thus, it cannot be the definitive solution (at least for the industry that aims at having economic margins and profits). On the other hand, since the 1990s, carbon dioxide has sparked increasing interest as a raw material for chemical processes. However, the technology progresses and enhancements are not able to follow the rate at which we are continuously emitting pollutants to the atmosphere. The Carbon Capture and Utilisation (CCU) can be in principle the definitive answer to the carbon dioxide reduction following a circular economy model, but it is not due to the large emissions and the request of a huge amount of energy to reduce the carbon dioxide. Currently, the CCU (also combined with CCS) is a powerful tool, but it partially contrasts the concerns we are facing. The problem is not related to the mitigation but to finding a long-term effective and reliable solution to the emissions and relative climate change. The most promising (and maybe only) solution is to completely change our mindset and the way bulk chemicals are produced currently. Renewable energies have reduced carbon footprint and they are infinite (but discontinuous). The discontinuity is not a concern if we consider the energy storage system. On the other hand, all the industry electrification is becoming more and more relevant for the decarbonisation path. The exploitation of renewable energy allows to decrease the CO2 emissions and the produced electricity has a relevant application in the green hydrogen production which experts consider the fuel of the future. The electrolysers are the devoted devices to convert the “green” electrical energy into chemical energy stored within molecules (for instance, hydrogen). Smart electrification will enable to reduce the dependence on fossil fuel also for endothermic chemical processes such as reforming processes. Differently from blue (from fossil fuels with CCS implemented to remove the CO2), turquoise (from methane thermal splitting with carbon as a by-product), and grey (from fossil fuel without a CCS system) hydrogen, the green one directly comes from the water-splitting exploiting renewable energies. Oxygen is the second product, but it is a valuable chemical. The (green) hydrogen can revolutionise our current production methods and energy grid system. The hydrogen can reduce the carbon dioxide resulting in CO2 valorisation. The industry electrification and the hydrogen economy are radical solutions and, as disruptive/innovative changes, it takes time to have a systematic application and see their benefits. The transient is due to political settlements, strategies development, energy distribution planning and renewal, and technologies improvements and strengthening. For instance, Haldor Tøpsoe patented the electrified steam methane reformer (SMR). It built the first pilot SMR, but we are still far from systematic implementation of this solution due to the energy costs and the completely new technology that requires more investigations and optimization. In the transition, the chemical industry plays an active role, and some hybrid alternatives can help to gradually shift to the new system as well. The present work is fully inserted in this energy transition period trying to bridge the gap between the fossil fuel industry and hydrogen economy and outlook how conventional industrial processes may be re-designed. This thesis was born from the (personal) opinion that at the current state (waiting for disruptive technologies becoming mature) only the CCUS is the real winning strategy to buffer the climate change and the issues related to carbon dioxide emissions. In this work, the methane and carbon dioxide are directly converted into syngas (intermediate) which is furtherly consumed to produce methanol which represents one of the most consumed chemicals around the world (chemical intermediate) but also as one of the most important alternative fuels for the energy transition as in George Olah’s roadmap. Starting from the consideration that air combustion processes present strong limitations in terms of CO2 recovery, the present work aims at proving that oxyfuel combustion allows generating pure CO2 diluted in steam. The ASU unit covers the oxygen supply. To properly model the air mixture and the ASU plant, an own thermodynamic package (compliant with Aspen Hysys and Unisim Design suites) was developed. Due to its composition and enthalpic content, the flue gas is an incredible source to produce syngas through different reforming processes without requiring extra external energy input. For instance, bi-reforming (BIREF) and reverse water-gas shift (RWGS) has been implemented and compared to verify their reliability as a reforming process for syngas production. The syngas condition and the hydrogen for the RWGS come from Solid Oxides Electrolysers Cells (SOEC) where renewable electrical energy produces green hydrogen. Then, instead of oxyfuel combustion, the dream process would exploit the direct H2 combustion to generate the heat for steam methane reforming (SMR) and RWGS. Due to patent filing and confidential information, only the SMR has been included in the present work. The produced syngas mixtures are converted into methanol. Graaf’s model was (robustly) refitted to update the model to modern and standard methanol production conditions. The robust method is general, thus, can be able to any kinetics needed for an update. The request for robustness emerged considering that all published works in the literature claim to be accurate, but the experimental data were not filtered to find outliers that negatively impact the refitting procedure. The resulting refitted model has been compared against the original one and the Vanden Bussche - Froment which are the most adopted model on an industrial scale to design the methanol synthesis loop. The results proved that the refitted model is an outstanding model that accurately methanol production over a wide operating conditions range (temperature, pressure, and syngas compositions due to the different feedstocks). Thus, it is possible to state that the refitting increases the flexibility of the original model. Then, the refitted model was tested on an industrial scale reactor. Once again, the refitted model provides the most accurate predictions. Finally, the syngas streams coming from the different analysed reformers have been fed to a methanol synthesis loop to check the methanol production. The results have been compared in terms of energy consumption and emissions to verify which could be the best reformer configuration for the energy transition period.
Da cinquant’anni a questa parte stiamo assistendo ad un cambiamento climatico senza precedenti, ma solo da dieci anni l’opinione pubblica è conscia delle reali conseguenze, su quello che sta succedendo e che il margine di manovra si sta assottigliando. Dobbiamo agire prima che sia troppo tardi. Lo sfruttamento di fonti energetiche e di carbone alternative (come l’anidride carbonica) emergono chiaramente come le nuove sfide che l’ingegneria chimica ed industriale stanno affrontando. In parallelo, la crescita economica e le economie emergenti sono affamate di energia e di combustibili. Questi due fattori trascinano e guidano la domanda di energia e di composti chimici di base. Quindi, ora dobbiamo inventarci/scoprire delle soluzioni alternative alla catena combustili fossili - energia/composti chimici per soddisfare la crescente richiesta. Lo sviluppo economico porta benessere, ma l’altra faccia della medaglia è l’inquinamento che è figlio dello sviluppo non sostenibile. L’accumulo di anidride carbonica e l’aumento della temperatura a livello globale sono gli effetti diretti del modello economico che perseguendo. La cattura dell’anidride carbonica (acronimo inglese CCS) fu il primo tentativo di ridurre le emissioni già negli anni ’70. L’insistente richiesta per soluzioni urgenti per mitigare sempre più velocemente il problema dell’emissione di gas serra ed il livello di prontezza tecnologica guidano il rinnovato interesse nelle tecniche di cattura CO2 (CCS) sebbene la sola cattura sia penalizzata dai consumi energetici e non produca nessun sottoprodotto economicamente valido. Questo la rende meno appetibile. Pertanto, questa non può essere la soluzione definitiva (almeno dal punto vista industriale che punta a generare sempre un margine di profitto). D’altro canto, sin dagli anni ’90, la CO2 ha acceso un crescente interesse come materia prima per i processi chimici. Gli avanzamenti tecnologici non sono comunque in grado di seguire pedissequamente la velocità con cui stiamo continuando ad emettere inquinanti nell’atmosfera. La cattura e riutilizzo dell’anidride carbonica (sigla inglese CCU) potrebbe essere in principio la soluzione definitiva alla riduzione delle emissioni seguendo un modello di economia circolare, ma non lo è a causa delle enormi emissioni attuali e la consistente richiesta energetica per ridurre la molecola di anidride carbonica. Allo stato attuale, il riutilizzo in combinazione con la cattura sono un potente strumento di contenimento, ma solo parzialmente nel contrasto alle emissioni. Il problema non è legato alla mitigazione, ma al trovare delle soluzioni che sia effettive e affidabili a lungo termine. La migliore (e probabilmente unica) soluzione è un radicale cambio di prospettiva, mentalità e modalità con cui produciamo attualmente i principali componenti chimici. Le fonti rinnovabili hanno ridotto l’impronta ambientale e sono infinite, ma discontinue. L’intermittenza e la discontinuità non rappresentano un problema se pensiamo ai sistemi di accumulo di energia. L’elettrificazione dei processi industriali sta diventando sempre più attraenti e attrattive per il processo di decarbonizzazione. Le fonti energetiche alternative consentono di ridurre le emissioni di anidride carbonica e la corrente elettrica prodotta ha rilevanti applicazioni nella produzione dell’idrogeno, che gli esperti considerano il carburante del futuro. Gli elettrolizzatori sono apparecchiature deputate alla produzione dell’idrogeno verde. A differenza dell’idrogeno blue (prodotto a partire da fonti fossili con sistemi di CCS per la cattura della CO2 prodotta), turchese (da decomposizione termica del metano che lascia come prodotto di scarto carbone puro) e grigio (da fonti fossili senza sequestro delle emissioni), quello verde deriva direttamente dalla lisi dell’acqua sfruttando energie rinnovabili. L’ossigeno è il secondo prodotto, ma ha un valore commerciale. L’idrogeno (verde) può rivoluzionare il nostro modo attuale di produrre e la griglia di distribuzione dell’energia. L’idrogeno è in grado di ridurre la CO2 valorizzandola. L’elettrificazione dei sistemi industriali e l’economia a idrogeno sono soluzioni economiche radicali e, come tutte le soluzioni innovative e rivoluzionarie, richiedono tempo per una loro applicazione sistematica e per vederne i benefici. Il periodo di transizione è dovuto ad accordi politici, sviluppo di strategie, rinnovo e ripianificazione del sistema di distribuzione dell’energia e miglioramento e consolidamento delle tecnologie. Per esempio, Haldor Tøpsoe ha brevettato lo steam-methane reformer elettrificato, ne ha già costruito un pilota di media scala, ma siamo ancora ben lungi da un’implementazione sistematica di questa soluzione a causa dell’enorme consumo energetico e alla tecnologia innovativa che richiede maggiore studio e ottimizzazione. Nella transizione l’industria chimica gioca un ruolo attivo ed alcune alternative ibride (a metà strada tra l’elettrificazione e il consumo dei combustili fossili) possono aiutare a muoversi gradualmente verso questo nuovo sistema. Questo lavoro è perfettamente inserito nel contesto della transizione energetica tentando di ridurre la distanza tra l’industria basata sulle fonti fossili e l’economia a idrogeno. Inoltre, punta a guardare oltre cercando immaginare come dei processi industriali convenzionali possano essere di ridisegnati. Questa tesi nasce dalla convinzione personale che allo stato attuale (aspettando che tecnologie rivoluzionarie diventino mature) solo la cattura e riutilizzo in situ siano la strategia vincente per tamponare il cambiamento climatico e i problemi legati alle emissioni di CO2. In questo lavoro il metano e l’anidride carbonica (due gas serra) sono direttamente convertiti in gas di sintesi (o syngas) che è ulteriormente consumato a produrre metanolo che rappresenta uno degli intermedi chimici più utilizzati, nonché il più importante combustibile alternativo per la transizione energetica come nel piano d’azione di George Olah. Partendo dalla considerazione che la combustione in aria presenta delle severe limitazioni in termini di recupero della CO2 prodotta, il presente lavoro intende provare che la combustione di metano in ossigeno consente di produrre anidride carbonica diluita in vapoure. Un impianto di separazione aria (ASU) copre la richiesta di ossigeno. Per modellare correttamente la separazione criogenica, un modello termodinamico è stato implementato ed integrato in Aspen Hysys e Unisim Design. Per il suo contenuto e valore entalpico, il fumo di scarico è un’incredibile fonte per produrre syngas sfruttando diversi sistemi di reforming senza la richiesta di energia extra. Per esempio, il bi-reforming, la reverse water-gas shift (RWGS) sono stati sviluppati e confrontati per verificare l’affidabilità per la produzione di syngas. L’affinamento della composizione del syngas e l’idrogeno per la RWGS sono forniti da un sistema di celle elettrolitiche di tipo SOEC dove l’energia elettrica da rinnovabile è convertita in idrogeno verde. In chiave futuribile, invece che bruciare metano ai bruciatori del reformer, il sogno sarebbe quello di consumare idrogeno verde per generare il calore necessario per lo SMR o la RWGS. Per questioni brevettuali e di riservatezza, verranno riportati solo i risultati per lo SMR. Le miscele di syngas così prodotte nelle varie fornaci analizzate sono poi convertite a metanolo. Il modello cinetico di Graaf è stato refittato (in maniera robusta) per aggiornarlo alle odierne condizioni operative nel sistema di produzione. La procedura (robusta) proposta è di validità generale e può essere applicata a qualsiasi modello cinetico che richieda un aggiornamento. La nuova cinetica ottenuta è quindi stata validata e comparata con altri modelli disponibili in letteratura, ovvero, il modello originale (Graaf) e la Vende Bussche - Froment che sono i più utilizzati su scala industriale per il design della sezione di produzione metanolo. I risultati sono stati incoraggianti e anche sorprendenti in quanto il nuovo modello predice accuratamente la produzione di metanolo su un ampio spettro di condizioni operative (temperatura, pressione e composizione del syngas a causa delle diverse fonti di approvvigionamento). Quindi è possibile affermare che la procedura di refit abbia aumentato la predittività e la flessibilità del modello originale. Successivamente, il nuovo modello è stato validato su scala industriale dimostrandosi ancora una volta come un modello affidabile avendo le migliori predizioni. Infine, le correnti di syngas prodotte dalle diverse fornaci sono state utilizzate in uno schema completo di sintesi metanolo. I risultati ottenuti sono stati infine confrontati in termini di consumi energetici ed emissioni.
Towards net-negative emissions methanol synthesis : integration of novel reformer conceptual design applying the process electrification and oxyfuel steam moderated combustion
Filippo, Bisotti
2022
Abstract
For fifty years, we have been facing climate change without precedents, but it is only for ten years that public opinion is aware of the real consequences of what is happening and that the time is shortening. We need to act before it will be too late. The exploitation of alternative renewable energy sources and carbon sources (such as carbon dioxide) emerges among the new challenges that chemical and industrial engineering is meeting. In parallel, economic growth and emerging economic systems are staved of energy and liquid oils. These two factors fuel the demand for energy and bulk chemical. Thus, now we must figure out feasible alternatives to fossil sources-to-energy/chemicals to satisfy the increasing demand. Economic growth brings wellness, but the dark side of this phenomenon is pollution which is the direct child of unsustainable development. The carbon dioxide accumulation and the global temperature increase are effects of these economic models we are pursuing. The Carbon Capture and Sequestration (CCS) was the first attempt to respond to the emissions reduction in the 1970s. The demand for urgent solutions to mitigate faster and faster the problem of greenhouse gases emissions and the level of technological readiness drive the renewed interest in the CCS despite the only capture has huge energy penalties, and it does not provide any valuable by-product. This makes it less appealing. Thus, it cannot be the definitive solution (at least for the industry that aims at having economic margins and profits). On the other hand, since the 1990s, carbon dioxide has sparked increasing interest as a raw material for chemical processes. However, the technology progresses and enhancements are not able to follow the rate at which we are continuously emitting pollutants to the atmosphere. The Carbon Capture and Utilisation (CCU) can be in principle the definitive answer to the carbon dioxide reduction following a circular economy model, but it is not due to the large emissions and the request of a huge amount of energy to reduce the carbon dioxide. Currently, the CCU (also combined with CCS) is a powerful tool, but it partially contrasts the concerns we are facing. The problem is not related to the mitigation but to finding a long-term effective and reliable solution to the emissions and relative climate change. The most promising (and maybe only) solution is to completely change our mindset and the way bulk chemicals are produced currently. Renewable energies have reduced carbon footprint and they are infinite (but discontinuous). The discontinuity is not a concern if we consider the energy storage system. On the other hand, all the industry electrification is becoming more and more relevant for the decarbonisation path. The exploitation of renewable energy allows to decrease the CO2 emissions and the produced electricity has a relevant application in the green hydrogen production which experts consider the fuel of the future. The electrolysers are the devoted devices to convert the “green” electrical energy into chemical energy stored within molecules (for instance, hydrogen). Smart electrification will enable to reduce the dependence on fossil fuel also for endothermic chemical processes such as reforming processes. Differently from blue (from fossil fuels with CCS implemented to remove the CO2), turquoise (from methane thermal splitting with carbon as a by-product), and grey (from fossil fuel without a CCS system) hydrogen, the green one directly comes from the water-splitting exploiting renewable energies. Oxygen is the second product, but it is a valuable chemical. The (green) hydrogen can revolutionise our current production methods and energy grid system. The hydrogen can reduce the carbon dioxide resulting in CO2 valorisation. The industry electrification and the hydrogen economy are radical solutions and, as disruptive/innovative changes, it takes time to have a systematic application and see their benefits. The transient is due to political settlements, strategies development, energy distribution planning and renewal, and technologies improvements and strengthening. For instance, Haldor Tøpsoe patented the electrified steam methane reformer (SMR). It built the first pilot SMR, but we are still far from systematic implementation of this solution due to the energy costs and the completely new technology that requires more investigations and optimization. In the transition, the chemical industry plays an active role, and some hybrid alternatives can help to gradually shift to the new system as well. The present work is fully inserted in this energy transition period trying to bridge the gap between the fossil fuel industry and hydrogen economy and outlook how conventional industrial processes may be re-designed. This thesis was born from the (personal) opinion that at the current state (waiting for disruptive technologies becoming mature) only the CCUS is the real winning strategy to buffer the climate change and the issues related to carbon dioxide emissions. In this work, the methane and carbon dioxide are directly converted into syngas (intermediate) which is furtherly consumed to produce methanol which represents one of the most consumed chemicals around the world (chemical intermediate) but also as one of the most important alternative fuels for the energy transition as in George Olah’s roadmap. Starting from the consideration that air combustion processes present strong limitations in terms of CO2 recovery, the present work aims at proving that oxyfuel combustion allows generating pure CO2 diluted in steam. The ASU unit covers the oxygen supply. To properly model the air mixture and the ASU plant, an own thermodynamic package (compliant with Aspen Hysys and Unisim Design suites) was developed. Due to its composition and enthalpic content, the flue gas is an incredible source to produce syngas through different reforming processes without requiring extra external energy input. For instance, bi-reforming (BIREF) and reverse water-gas shift (RWGS) has been implemented and compared to verify their reliability as a reforming process for syngas production. The syngas condition and the hydrogen for the RWGS come from Solid Oxides Electrolysers Cells (SOEC) where renewable electrical energy produces green hydrogen. Then, instead of oxyfuel combustion, the dream process would exploit the direct H2 combustion to generate the heat for steam methane reforming (SMR) and RWGS. Due to patent filing and confidential information, only the SMR has been included in the present work. The produced syngas mixtures are converted into methanol. Graaf’s model was (robustly) refitted to update the model to modern and standard methanol production conditions. The robust method is general, thus, can be able to any kinetics needed for an update. The request for robustness emerged considering that all published works in the literature claim to be accurate, but the experimental data were not filtered to find outliers that negatively impact the refitting procedure. The resulting refitted model has been compared against the original one and the Vanden Bussche - Froment which are the most adopted model on an industrial scale to design the methanol synthesis loop. The results proved that the refitted model is an outstanding model that accurately methanol production over a wide operating conditions range (temperature, pressure, and syngas compositions due to the different feedstocks). Thus, it is possible to state that the refitting increases the flexibility of the original model. Then, the refitted model was tested on an industrial scale reactor. Once again, the refitted model provides the most accurate predictions. Finally, the syngas streams coming from the different analysed reformers have been fed to a methanol synthesis loop to check the methanol production. The results have been compared in terms of energy consumption and emissions to verify which could be the best reformer configuration for the energy transition period.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bisotti_thesis_final_version.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
16.55 MB
Formato
Adobe PDF
|
16.55 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205482
URN:NBN:IT:POLIMI-205482