In the coming Sixth Generation (6G) networks, advanced vehicle-to-everything (V2X) communication technologies will accelerate the evolution of Intelligent Transportation Systems (ITS), with the goal of improving safety and traffic efficiency. The Society of Automotive Engineers (SAE) specified different automation levels, from level 0 (i.e., no automation) to level 5 (i.e., full automation) for autonomous driving. The higher the level of automation, the more critical Quality of Service (QoS) is in the V2X systems. To support the advanced use cases of the evolving 6G V2X system, Ultra-reliable Low-latency communication (URLLC) is required. The severe propagation loss of Electromagnetic (EM) signals operating in the MillimeterWave (mmWave) and sub-THz frequency bands, on the other hand, limits the coverage range and makes beam-type communication links susceptible to being blocked. Although the Multiple Input Multiple Output (MIMO) system can compensate for this high path loss by beamforming, there are still some challenges to be addressed in the 6G V2X systems, such as efficient Initial Access (IA), blockage modelling and mitigation, which are the main topics discussed in this thesis. The pencil-like high-gain beam pointing enabled by the MIMO system is required in the 6G V2X systems to guarantee reliable link quality to support some advanced use cases. Thus, an efficient IA scheme for the vehicles to select the best beam among the candidate narrow beams to synchronize with the vehicular network is pretty important. Currently, a position-based beam sweeping scheme is widely utilized for fastening the IA. However, the positioning information may be inaccurate or not always available in a highly dynamic scenario like the vehicular network. Inspired by the non-uniform distribution of the communication angles constrained by the road typologies in urban scenarios, the Probabilistic Codebook (PCB) based beams are designed to speed up the IA procedure in vehicular networks. In particular, the most likely beams are prioritized to be tested. In addition, a non-uniform quantization of the historical communication angles for the PCB design is expected to achieve a performance enhancement compared to the uniform scheme specified in the current 3rd Generation Partnership Project (3GPP) standard. Numerical simulation results assisted by professional simulation tools (e.g., Simulation of Urban MObility (SUMO), and Geometry-based, Efficient propagation Model for V2V communication (GEMV2)) consolidate our design benefits of a reduced number of IA trials in Chapter 2. The simulation scenarios are extracted from OpenStreetMap, which is close to reality. Furthermore, when compared to the uniform codebook design, it achieves a lower performance degradation in terms of average Signal-to-Noise Ratio (SNR) and Spectral Efficiency (SE) for PCB design with non-uniform quantization on the statistical communication angles. Although the precise beamforming enabled by MIMO systems can compensate for the high propagation loss of the EM signals, the high sensitivity of the beam-type communication links to the blockages makes it challenging to guarantee the URLLC performance for some advanced use cases of 6G V2X systems. Thus, the prediction of the V2X link performance by considering the blockage impacts becomes of paramount importance. In Chapter 3 of this thesis, we proposed a novel vehicular blockage modelling approach for an arbitrary Vehicle-to-Vehicle (V2V) sidelink in a multi-lane highway scenario to derive an analytical model of SNR distribution as well as the service probability. In particular, the derived model considers multiple comprehensive impacting factors such as multiple vehicle blockers, random vehicles’ height, and traffic density. Exhaustive simulation results show a good match between the derived analytical model and Monte Carlo simulations. This proposed analytical model provides an efficient tool for End-to-End (E2E) performance prediction, beam selection, and resource scheduling to mitigate the blockage effects. In the case of the V2X communications links being blocked, candidate blockage mitigation solutions, e.g., advanced relaying technologies, are required for reliable link connectivity, which is the main focus of the remaining parts of this thesis (Chapter 4 - 5). Specifically, the emerging relaying technologies, such as metasurface based and Amplify-and-Forward (AF) based, are promising for constructing a Smart Radio Environment (SRE) to meet diverse 6G applications. Firstly, benefiting from the new artificial metasurface technologies, the EM signals can be near-passively or fully-passively reflected towards the destination with a reliable QoS. Unlike the conventional Planar Reconfigurable Intelligent Surface (RIS), a novel Conformal Intelligent Reconfigurable Surface (C-IRS) is adopted to be deployed on vehicles’ doors to assist the V2V sidelink communications in a multi-lane highway scenario in Chapter 4. In particular, the proposed C-IRS is already set up with phase compensation for its curved shape so that EM signals can be reflected in a specular way (i.e., it is fully passive). Compared to the situation without C-IRS implementation, the significant blockage reduction can be as high as 20%. Moreover, if the phase of each element can be dynamically adjusted (i.e., Conformal Reconfigurable Intelligent Surface (C-RIS)), the blockage mitigation can be up to 70%. In the multi-lane highway scenario, the remarkable performance improvement in terms of the average SNR can be 10 − 20 dB for the C-IRS case with proper C-IRS selection. An average SNR gain of more than 30 dB is achieved with real-time phase adjustment at C-RIS. However, additional control signalling overhead is required, which will introduce an inevitable delay and computational cost. The proposed fully passive C-IRS has been demonstrated to achieve a remarkable improvement in performance and offers a new way to design a metasurface for blockage mitigation in 6G V2V communications. In addition to the passive relaying scheme presented in Chapter 4, Smart Repeater (SR) is one key representative of active relaying technologies for the blockage mitigation that will be standardized in the upcoming 3rd Generation Partnership Project (3GPP) Release 18. The SR enables a smarter AF operation than the conventional Radio Frequency (RF) AF. In the Chapter 5 of this thesis, we design a tri-sectoral Advanced SR (ASR) to support Vehicle-to-Infrastructure (V2I) communications, which is expected to achieve a doubly angular coverage (i.e., 240 deg) compared to the conventional SR, with a coverage of 120 deg. Specifically, the proposed ASR has three antenna arrays, one of which is towards Base Station (BS) and the other two towards the service areas (each with a Field-of-View (FoV) of 120 deg). Moreover, the multi-level multi-resolution codebook is designed to support multi-user communications. Numerical simulation results consolidate our tri-sectoral design benefits with the objective of maximizing the number of served vehicle User Equipments (UEs) constrained by per-UE rate and time-frequency resources, compared to the conventional SR. A more remarkable gain is achieved with a suitable trade-off between the number of served UEs and the time slots. Moreover, the benefits of the ASR design over the conventional SR in terms of cumulative spectral efficiency are also observed up to a factor of 2.
Nelle prossime reti di sesta generazione (6G), le tecnologie avanzate di comunicazione veicolo-tutto (V2X) accelereranno l'evoluzione dei sistemi di trasporto intelligenti (ITS), con l'obiettivo di migliorare la sicurezza e l'efficienza del traffico. La Società degli ingegneri automobilistici (SAE) ha specificato diversi livelli di automazione, dal livello 0 (cioè nessuna automazione) al livello 5 (ossia, piena automatizzazione) per la guida autonoma. Più alto è il livello di automazione, più critica è la Qualità del Servizio (QoS) nei sistemi V2X. Per supportare i casi di utilizzo avanzati del sistema 6G V2X in evoluzione, è necessaria la comunicazione a bassa latenza ultra-affidabile (URLLC). La grave perdita di propagazione dei segnali elettromagnetici (EM) operanti nelle bande di frequenza Millimeter Wave (mmWave) e sub-THz, d'altra parte, limita la gamma di copertura e rende i collegamenti di comunicazione di tipo fascio suscettibili di essere bloccati. Sebbene il sistema Multiple Input Multiple Output (MIMO) possa compensare questa perdita di percorso elevata attraverso il beamforming, ci sono ancora alcune sfide da affrontare nei sistemi 6G V2X, come l'efficiente accesso iniziale (IA), la modellazione del blocco e l'attrazione, che sono i principali argomenti discussi in questa tesi. La puntatura a fascio ad alto guadagno a forma di matita abilitata dal sistema MIMO è richiesta nei sistemi 6G V2X per garantire una qualità di collegamento affidabile per supportare alcuni casi di utilizzo avanzati. Così, un efficiente schema IA per i veicoli per selezionare il fascio migliore tra i fasci stretti candidati per sincronizzarsi con la rete veicolare è piuttosto importante. Attualmente, uno schema di saldatura del fascio basato sulla posizione è ampiamente utilizzato per fissare l'IA. Tuttavia, le informazioni di posizionamento possono essere inesatte o non sempre disponibili in uno scenario altamente dinamico come la rete dei veicoli. Ispirati alla distribuzione non uniforme degli angoli di comunicazione limitati dalle tipologie stradali in scenari urbani, i fasci basati su Probabilistic Codebook (PCB) sono progettati per accelerare la procedura di IA nelle reti dei veicoli. In particolare, i fasci più probabili sono prioritari per essere testati. Inoltre, una quantizzazione non uniforme degli angoli storici di comunicazione per la progettazione del PCB dovrebbe ottenere un miglioramento delle prestazioni rispetto allo schema uniforme specificato nell'attuale standard 3GPP. I risultati della simulazione numerica assistiti da strumenti di simulazione professionali (ad esempio, Simulation of Urban Mobility (SUMO) e Geometry-based, Efficient propagation Model for V2V communication (GEMV2)) consolidano i nostri vantaggi di progettazione di un numero ridotto di prove di IA nel Capitolo 2. I scenari di simulazione sono estratti da OpenStreetMap, che è vicino alla realtà. Inoltre, se confrontato con il design uniforme del codec, raggiunge una diminuzione delle prestazioni in termini di rapporto segnale-rumore medio (SNR) e efficienza spectrale (SE) per la progettazione di PCB con quantizzazione non uniforme sugli angoli di comunicazione statistica. Sebbene il fascio preciso abilitato dai sistemi MIMO possa compensare l'alta perdita di propagazione dei segnali EM, l'elevata sensibilità dei collegamenti di comunicazione di tipo fascio ai blocchi rende difficile garantire le prestazioni URLLC per alcuni casi di utilizzo avanzati di sistemi 6G V2X. Pertanto, la previsione delle prestazioni del collegamento V2X considerando gli impatti del blocco diventa di primaria importanza. Nel capitolo 3 di questa tesi, abbiamo proposto un nuovo approccio di modellazione del blocco dei veicoli per un collegamento laterale arbitrario da veicolo a veicolo (V2V) in uno scenario di autostrada multi-line per derivare un modello analitico della distribuzione SNR e della probabilità di servizio. In particolare, il modello derivato prende in considerazione più fattori di impatto complessivi, come i bloccanti multipli dei veicoli, l'altezza dei mezzi casuali e la densità del traffico. I risultati esaustivi della simulazione mostrano una buona corrispondenza tra il modello analitico derivato e le simulazioni di Monte Carlo. Questo modello analitico proposto fornisce uno strumento efficiente per la previsione delle prestazioni end-to-end (E2E), la selezione del fascio e la pianificazione delle risorse per mitigare gli effetti del blocco. Nel caso in cui i collegamenti di comunicazione V2X siano bloccati, sono necessarie soluzioni di mitigazione del blocco candidato, ad esempio, tecnologie avanzate di relaying, per una connettività di collegamento affidabile, che è il focus principale delle parti rimanenti di questa tesi. (Chapter 4 - 5). In particolare, le tecnologie emergenti di trasmissione, come metasurface-based e Amplify-and-Forward (AF)-based, sono promettenti per la costruzione di un Smart Radio Environment (SRE) per soddisfare le diverse applicazioni 6G. In primo luogo, beneficiando delle nuove tecnologie artificiali di metasurfaccia, i segnali EM possono essere riflessi quasi passivamente o completamente passivamente verso la destinazione con un QoS affidabile. A differenza della convenzionale Planar Reconfigurable Intelligent Surface (RIS), è stata adottata una nuova Conformal Inteligent Recon konfigurable Surfaces (C-IRS) per essere impostata sulle porte dei veicoli per assistere le comunicazioni laterali V2V in uno scenario di autostrada multi-lance nel capitolo 4. In particolare, la proposta C-IRS è già impostata con compensazione di fase per la sua forma curva in modo che i segnali EM possano essere riflessi in modo speculativo (i.e., it is fully passive). Rispetto alla situazione senza implementazione C-IRS, la significativa riduzione del blocco può essere fino al 20%. Inoltre, se la fase di ciascun elemento può essere regolata dinamicamente (cioè Conformal Reconfigurable Intelligent Surface (C-RIS)), la mitigazione del blocco può essere fino al 70%. Nel scenario di autostrada multi-lance, il notevole miglioramento delle prestazioni in termini di SNR medio può essere di 10 − 20 dB per il caso C-IRS con la corretta selezione C- IRS. Un guadagno medio di SNR superiore a 30 dB è raggiunto con l'aggiustamento di fase in tempo reale a C-RIS. Tuttavia, è necessaria una segnalazione di controllo aggiuntiva, che introdurrà un inevitabile ritardo e costi computazionali. Il C-IRS completamente passivo proposto ha dimostrato di ottenere un notevole miglioramento delle prestazioni e offre un nuovo modo per progettare una meta superficie per la mitigazione del blocco nelle comunicazioni 6G V2V. Oltre allo schema di relegamento passivo presentato nel Capitolo 4, Smart Repeater (SR) è uno dei principali rappresentanti delle tecnologie di relege attivo per la mitigazione del blocco che sarà standardizzato nel prossimo 3rd Generation Partnership Project (3GPP) Release 18. Il SR consente un funzionamento AF più intelligente rispetto al convenzionale AF a radiofrequenza (RF). Nel capitolo 5 di questa tesi, abbiamo progettato un Advanced SR (ASR) tri-sectorale per supportare le comunicazioni Vehicle-to-Infrastructure (V2I), che si prevede di raggiungere una copertura angolare doppia (cioè 240 gradi) rispetto al SR convenzionale, con copertura di 120 gradi. In particolare, l’ASR proposto ha tre array di antenne, una delle quali è diretta verso la Stazione Base (BS) e le altre due verso le aree di servizio (ogni con un campo di vista (FoV) di 120 gradi). Inoltre, il codec multi-level multi-resolution è progettato per supportare le comunicazioni multi-utente. I risultati della simulazione numerica consolidano i nostri vantaggi di progettazione tri-settoriale con l'obiettivo di massimizzare il numero di apparecchiature utente (UEs) servite limitate dalle risorse per tasso e frequenza temporale dell'UE, rispetto al SR convenzionale. Un guadagno più notevole si ottiene con un adeguato compromesso tra il numero di UE servite e gli slot di tempo. Inoltre, i vantaggi del design ASR rispetto al SR convenzionale in termini di efficienza spectrale cumulativa sono anche osservati fino a un fattore di 2.
Beam-type communications for the 6G vehicle-to-everything (V2X) systems
Kai, Dong
2023
Abstract
In the coming Sixth Generation (6G) networks, advanced vehicle-to-everything (V2X) communication technologies will accelerate the evolution of Intelligent Transportation Systems (ITS), with the goal of improving safety and traffic efficiency. The Society of Automotive Engineers (SAE) specified different automation levels, from level 0 (i.e., no automation) to level 5 (i.e., full automation) for autonomous driving. The higher the level of automation, the more critical Quality of Service (QoS) is in the V2X systems. To support the advanced use cases of the evolving 6G V2X system, Ultra-reliable Low-latency communication (URLLC) is required. The severe propagation loss of Electromagnetic (EM) signals operating in the MillimeterWave (mmWave) and sub-THz frequency bands, on the other hand, limits the coverage range and makes beam-type communication links susceptible to being blocked. Although the Multiple Input Multiple Output (MIMO) system can compensate for this high path loss by beamforming, there are still some challenges to be addressed in the 6G V2X systems, such as efficient Initial Access (IA), blockage modelling and mitigation, which are the main topics discussed in this thesis. The pencil-like high-gain beam pointing enabled by the MIMO system is required in the 6G V2X systems to guarantee reliable link quality to support some advanced use cases. Thus, an efficient IA scheme for the vehicles to select the best beam among the candidate narrow beams to synchronize with the vehicular network is pretty important. Currently, a position-based beam sweeping scheme is widely utilized for fastening the IA. However, the positioning information may be inaccurate or not always available in a highly dynamic scenario like the vehicular network. Inspired by the non-uniform distribution of the communication angles constrained by the road typologies in urban scenarios, the Probabilistic Codebook (PCB) based beams are designed to speed up the IA procedure in vehicular networks. In particular, the most likely beams are prioritized to be tested. In addition, a non-uniform quantization of the historical communication angles for the PCB design is expected to achieve a performance enhancement compared to the uniform scheme specified in the current 3rd Generation Partnership Project (3GPP) standard. Numerical simulation results assisted by professional simulation tools (e.g., Simulation of Urban MObility (SUMO), and Geometry-based, Efficient propagation Model for V2V communication (GEMV2)) consolidate our design benefits of a reduced number of IA trials in Chapter 2. The simulation scenarios are extracted from OpenStreetMap, which is close to reality. Furthermore, when compared to the uniform codebook design, it achieves a lower performance degradation in terms of average Signal-to-Noise Ratio (SNR) and Spectral Efficiency (SE) for PCB design with non-uniform quantization on the statistical communication angles. Although the precise beamforming enabled by MIMO systems can compensate for the high propagation loss of the EM signals, the high sensitivity of the beam-type communication links to the blockages makes it challenging to guarantee the URLLC performance for some advanced use cases of 6G V2X systems. Thus, the prediction of the V2X link performance by considering the blockage impacts becomes of paramount importance. In Chapter 3 of this thesis, we proposed a novel vehicular blockage modelling approach for an arbitrary Vehicle-to-Vehicle (V2V) sidelink in a multi-lane highway scenario to derive an analytical model of SNR distribution as well as the service probability. In particular, the derived model considers multiple comprehensive impacting factors such as multiple vehicle blockers, random vehicles’ height, and traffic density. Exhaustive simulation results show a good match between the derived analytical model and Monte Carlo simulations. This proposed analytical model provides an efficient tool for End-to-End (E2E) performance prediction, beam selection, and resource scheduling to mitigate the blockage effects. In the case of the V2X communications links being blocked, candidate blockage mitigation solutions, e.g., advanced relaying technologies, are required for reliable link connectivity, which is the main focus of the remaining parts of this thesis (Chapter 4 - 5). Specifically, the emerging relaying technologies, such as metasurface based and Amplify-and-Forward (AF) based, are promising for constructing a Smart Radio Environment (SRE) to meet diverse 6G applications. Firstly, benefiting from the new artificial metasurface technologies, the EM signals can be near-passively or fully-passively reflected towards the destination with a reliable QoS. Unlike the conventional Planar Reconfigurable Intelligent Surface (RIS), a novel Conformal Intelligent Reconfigurable Surface (C-IRS) is adopted to be deployed on vehicles’ doors to assist the V2V sidelink communications in a multi-lane highway scenario in Chapter 4. In particular, the proposed C-IRS is already set up with phase compensation for its curved shape so that EM signals can be reflected in a specular way (i.e., it is fully passive). Compared to the situation without C-IRS implementation, the significant blockage reduction can be as high as 20%. Moreover, if the phase of each element can be dynamically adjusted (i.e., Conformal Reconfigurable Intelligent Surface (C-RIS)), the blockage mitigation can be up to 70%. In the multi-lane highway scenario, the remarkable performance improvement in terms of the average SNR can be 10 − 20 dB for the C-IRS case with proper C-IRS selection. An average SNR gain of more than 30 dB is achieved with real-time phase adjustment at C-RIS. However, additional control signalling overhead is required, which will introduce an inevitable delay and computational cost. The proposed fully passive C-IRS has been demonstrated to achieve a remarkable improvement in performance and offers a new way to design a metasurface for blockage mitigation in 6G V2V communications. In addition to the passive relaying scheme presented in Chapter 4, Smart Repeater (SR) is one key representative of active relaying technologies for the blockage mitigation that will be standardized in the upcoming 3rd Generation Partnership Project (3GPP) Release 18. The SR enables a smarter AF operation than the conventional Radio Frequency (RF) AF. In the Chapter 5 of this thesis, we design a tri-sectoral Advanced SR (ASR) to support Vehicle-to-Infrastructure (V2I) communications, which is expected to achieve a doubly angular coverage (i.e., 240 deg) compared to the conventional SR, with a coverage of 120 deg. Specifically, the proposed ASR has three antenna arrays, one of which is towards Base Station (BS) and the other two towards the service areas (each with a Field-of-View (FoV) of 120 deg). Moreover, the multi-level multi-resolution codebook is designed to support multi-user communications. Numerical simulation results consolidate our tri-sectoral design benefits with the objective of maximizing the number of served vehicle User Equipments (UEs) constrained by per-UE rate and time-frequency resources, compared to the conventional SR. A more remarkable gain is achieved with a suitable trade-off between the number of served UEs and the time slots. Moreover, the benefits of the ASR design over the conventional SR in terms of cumulative spectral efficiency are also observed up to a factor of 2.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Kai Dong.pdf
accesso solo da BNCF e BNCR
Dimensione
6.48 MB
Formato
Adobe PDF
|
6.48 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205609
URN:NBN:IT:POLIMI-205609