The research presented in this dissertation stems from the need of restructuring preclinical experimentation during drug development, aiming to streamline it while increasing its and predictiveness. Complex in vitro models are envisioned as the platforms that can lead this revolution, by conjugating in homo-like responses with high-throughput experimental designs. Considering the central role of the liver in drug metabolism, this research is focused on modelling the hepatic environment. The first activities focused on the development of Hep3Gel, a hybrid alginate and ECM hydrogel able to mimic the extracellular hepatic environment both from the biochemical and mechanical point of view. Additionally, Hep3Gel was designed to allow its processing through multiple fabrication techniques, allowing its implementation within virtually any culture system, thus bringing a further degree of standardization and reproducibility between models based on this material. Subsequently, aiming to provide cultured cells with a homogeneous degree of oxygenation, experimental activities focused understanding and optimizing the processing of Hep3Gel through extrusion-based bioprinting. Macroporous constructs fabricated in this way allowed to extend the culture time and to overcome the formation of necrotic cores, that is typical of 3D cultures produced within monolithic hydrogels. However, the predictiveness of preclinical experimentation can only be maximized by also including disease models. For this reason, this work finally focused on the development of bioinks for producing models of hepatic steatosis (NAFLD). To this end, the know-how acquired when developing Hep3Gel was translated to the design of s-Hep3Gel. This ink was tuned to mimic mechanical and biochemical features characterizing fatty liver tissue and can induce the development of NAFLD-like features on cultured cells.
La ricerca presentata in questa tesi parte dalla necessità di ristrutturare la sperimentazione preclinica durante lo sviluppo farmaceutico, con l'obiettivo di renderla più efficiente e aumentare la sua produttività. I modelli in vitro complessi sono visti come le piattaforme che possono guidare questa rivoluzione, combinando risposte simili a quelle osservabili in vivo, con design sperimentali ad alto rendimento. Considerando il ruolo centrale del fegato nel metabolismo dei farmaci, questa ricerca si concentra sulla modellazione dell'ambiente epatico. Le prime attività si sono concentrate sullo sviluppo di Hep3Gel, un idrogel ibrido di alginato e ECM in grado di imitare l'ambiente epatico extracellulare sia dal punto di vista biochimico che meccanico. Inoltre, Hep3Gel è stato progettato per consentire il suo trattamento attraverso molteplici tecniche di fabbricazione, consentendo la sua implementazione all'interno di qualsiasi sistema di coltura, garantendo un maggior grado di standardizzazione e riproducibilità tra i modelli basati su questo materiale. Successivamente, con l'obiettivo di fornire alle cellule coltivate un grado uniforme di ossigenazione, le attività sperimentali si sono concentrate sulla comprensione e ottimizzazione del trattamento di Hep3Gel attraverso la biostampa basata sull'estrusione. I costrutti macroporosi prodotti in questo modo hanno permesso di prolungare il tempo di coltura e superare la formazione di nuclei necrotici, tipica dei coltivi 3D prodotti all'interno di idrogeli monolitici. Tuttavia, la prevedibilità della sperimentazione preclinica può essere massimizzata solo includendo anche modelli di malattia. Per questo motivo, questo lavoro si è infine concentrato sullo sviluppo di bioinchiostri per produrre modelli di steatosi epatica (NAFLD). A tal fine, la conoscenza acquisita nello sviluppo di Hep3Gel è stata tradotta nel design di s-Hep3Gel. Questo inchiostro è stato tarato per imitare le caratteristiche meccaniche e biochimiche che caratterizzano il tessuto epatico grasso e può indurre lo sviluppo di caratteristiche simili a NAFLD nelle cellule coltivate.
Conceived by nature, engineered by humans : design and fabrication of chemomecanically relevant hepatic tissue models
GIUSEPPE, GUAGLIANO
2024
Abstract
The research presented in this dissertation stems from the need of restructuring preclinical experimentation during drug development, aiming to streamline it while increasing its and predictiveness. Complex in vitro models are envisioned as the platforms that can lead this revolution, by conjugating in homo-like responses with high-throughput experimental designs. Considering the central role of the liver in drug metabolism, this research is focused on modelling the hepatic environment. The first activities focused on the development of Hep3Gel, a hybrid alginate and ECM hydrogel able to mimic the extracellular hepatic environment both from the biochemical and mechanical point of view. Additionally, Hep3Gel was designed to allow its processing through multiple fabrication techniques, allowing its implementation within virtually any culture system, thus bringing a further degree of standardization and reproducibility between models based on this material. Subsequently, aiming to provide cultured cells with a homogeneous degree of oxygenation, experimental activities focused understanding and optimizing the processing of Hep3Gel through extrusion-based bioprinting. Macroporous constructs fabricated in this way allowed to extend the culture time and to overcome the formation of necrotic cores, that is typical of 3D cultures produced within monolithic hydrogels. However, the predictiveness of preclinical experimentation can only be maximized by also including disease models. For this reason, this work finally focused on the development of bioinks for producing models of hepatic steatosis (NAFLD). To this end, the know-how acquired when developing Hep3Gel was translated to the design of s-Hep3Gel. This ink was tuned to mimic mechanical and biochemical features characterizing fatty liver tissue and can induce the development of NAFLD-like features on cultured cells.| File | Dimensione | Formato | |
|---|---|---|---|
|
THESIS_GGUAGLIANO[FINAL].pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
33.33 MB
Formato
Adobe PDF
|
33.33 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205656
URN:NBN:IT:POLIMI-205656