Vascular tissue engineering aims to regenerate vessels “at the target site” using scaffolds able to induce endogenous regeneration, harnessing the natural foreign body response towards wound healing process. This biological process involves a complex series of events that could lead to detrimental outcomes, such as fibrosis or chronic inflammation. Critical to the success of this approach is a fine balance between functional neo-tissue formation and scaffold degradation. Despite the progress made with scaffolds, little is known about the host response and neo-tissue growth during and after scaffold resorption. With the aim of investigating these underlying biomechanisms, in vitro and ex vivo models are becoming increasingly more relevant as alternatives to in vivo animal tests, that remain the standard. In this scenario, the main purpose of my PhD research is to develop an advanced culture system to provide an effective device to investigate the complex bio-mechanical events that occur in vascular tissue engineering. Thus, it will be possible to reach fundamental insight in interaction between cells, tissue, graft and external mechanical cues, figuring out which are the phenomena that could lead to graft implantation failure.
L'ingegneria dei tessuti vascolari mira a rigenerare i vasi in situ utilizzando scaffold capaci di indurre la rigenerazione endogena, sfruttando la risposta naturale del corpo umano nel processo di guarigione. Questo processo biologico coinvolge una serie complessa di eventi che potrebbero portare a esiti dannosi, come la fibrosi o l'infiammazione cronica. Critico per il successo di questo approccio è un equilibrio delicato tra la formazione di neo-tessuto funzionale e la degradazione dello scaffold. Nonostante i progressi raggiunti, si sa ancora poco della risposta dell'ospite e della crescita del neo-tessuto durante e dopo la riassorbimento del graft. Con l'obiettivo di investigare questi bio-meccanismi, i modelli in vitro ed ex vivo stanno diventando sempre più rilevanti come alternative ai test animali in vivo, che rimangono lo standard. In questo scenario, lo scopo principale della mia ricerca di dottorato è quello di sviluppare un sistema di coltura avanzato per fornire un dispositivo efficace per investigare i complessi eventi biomeccanici che si verificano nell'ingegneria dei tessuti vascolari. In questo modo, sarà possibile ottenere una comprensione fondamentale dell'interazione tra cellule, tessuti, innesti e segnali meccanici esterni, individuando i fenomeni che potrebbero portare al fallimento dell'impianto dell'innesto.
Development of an advanced culture system to emulate complex flow-induced stimuli for vascular engineering
ELIA, PEDERZANI
2024
Abstract
Vascular tissue engineering aims to regenerate vessels “at the target site” using scaffolds able to induce endogenous regeneration, harnessing the natural foreign body response towards wound healing process. This biological process involves a complex series of events that could lead to detrimental outcomes, such as fibrosis or chronic inflammation. Critical to the success of this approach is a fine balance between functional neo-tissue formation and scaffold degradation. Despite the progress made with scaffolds, little is known about the host response and neo-tissue growth during and after scaffold resorption. With the aim of investigating these underlying biomechanisms, in vitro and ex vivo models are becoming increasingly more relevant as alternatives to in vivo animal tests, that remain the standard. In this scenario, the main purpose of my PhD research is to develop an advanced culture system to provide an effective device to investigate the complex bio-mechanical events that occur in vascular tissue engineering. Thus, it will be possible to reach fundamental insight in interaction between cells, tissue, graft and external mechanical cues, figuring out which are the phenomena that could lead to graft implantation failure.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_03_Pederzani.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
12.8 MB
Formato
Adobe PDF
|
12.8 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205703
URN:NBN:IT:POLIMI-205703