The scope of the Ph.D. thesis activity is to propose and demonstrate the industrial feasibility of an innovative and sustainable process that improves the production of hydrogen as well as reduces the hydrogen sulfide (H2S) and carbon dioxide (CO2) emissions. This is the new and established technology called SACSTM (Sulfidric Acid Catalytic Splitting). Despite their massive production, H2S and CO2 are two critical pollutants, H2S is toxic and CO2 is responsible for impacts on ecological and environmental system. This thesis aims at investigating this novel promising route effectively integrated with different industrial process like steam reforming and methanol production. H2S is converted according to the following overall reaction: H2S → H2 + 0.5S2 As first, the involved kinetic mechanism was studied, starting from the simplest mechanisms of H2S (i.e., H/S system) pyrolysis up H/S/O/C global system. The kinetic was extensive validated with literature and industrial cases in the well- known conditions of Sulfur Recovery Process. This activity was complemented by building a bench-scale plant to study the effects of the catalytic decomposition of hydrogen sulfide toward hydrogen conversion and coupling it with carbon dioxide into methanol at low pressure. The optimal configuration of the whole process has been studied in a simulation suite Aspen HYSYS and, a complete plant model able to manage the recycle of unconverted acid gases has been developed. The SACS catalytic reactor is simulated with global reactions and in order to account the distribution of sulfur allotropes, the thermodynamic equilibrium is assumed. Then, SACSTM technology is applied to methanol process. The advantages of the novel process are highlighted, both at technical and environmental levels. Finally, the engineering study is then accompanied by a preliminary economic analysis and a life cycle assessment to estimate the environmental performances of the novel process, performed by SimaPro. Different scenarios have been evaluated throughout this work, in particular the two alternatives of a grass-roots plant or a revamping of an existing methanol facility, in which H2S is treated with the Claus process, are considered. The advantages of the revamped process are highlighted, both at technical and environmental levels, are encouraging at this stage of design.
Lo scopo del dottorato l'attività di tesi consiste nel proporre e dimostrare la fattibilità industriale di un processo innovativo e sostenibile che migliora anche la produzione di idrogeno riduce le emissioni di idrogeno solforato (H2S) e anidride carbonica (CO2). Questo è il nuovo e tecnologia consolidata denominata SACSTM (Sulfidric Acid Catalytic Splitting). Nonostante la loro massiccia produzione, H2S e CO2 sono due inquinanti critici, H2S è tossico e responsabile di CO2 impatti sul sistema ecologico e ambientale. Questa tesi si propone di indagare questo romanzo percorso promettente efficacemente integrato con diversi processi industriali come steam reforming e produzione di metanolo. H2S viene convertito secondo la seguente reazione complessiva: H2S → H2 + 0,5S2 Come prima cosa è stato studiato il meccanismo cinetico coinvolto, partendo dai meccanismi più semplici di Pirolisi H2S (cioè sistema H/S) su sistema globale H/S/O/C. La cinetica è stata ampiamente convalidata con letteratura e casi industriali nelle ben note condizioni del processo di recupero dello zolfo. Questa attività è stata integrata dalla costruzione di un impianto a scala da banco per studiare gli effetti del decomposizione catalitica dell'idrogeno solforato verso la conversione dell'idrogeno e accoppiamento con esso anidride carbonica in metanolo a bassa pressione. La configurazione ottimale dell'intero processo è stato studiato in una suite di simulazione Aspen HYSYS e, un modello di impianto completo in grado di gestire il riciclo dei gas acidi non convertiti. Il reattore catalitico SACS è simulato con reazioni globali e per tenere conto della distribuzione degli allotropi di zolfo, si assume l'equilibrio termodinamico. Quindi, la tecnologia SACSTM viene applicata al metanolo processi. I vantaggi del nuovo processo sono evidenziati, sia a livello tecnico che livelli ambientali. Infine, lo studio di ingegneria è poi accompagnato da un'analisi economica preliminare e da una vita valutazione del ciclo per stimare le prestazioni ambientali del nuovo processo, eseguita da SimaPro. Durante questo lavoro sono stati valutati diversi scenari, in particolare i due alternative di un impianto di base o un revamping di un impianto di metanolo esistente, in cui H2S è trattati con il processo Claus, sono considerati. I vantaggi del processo rinnovato sono evidenziati, sia a livello tecnico che ambientale, sono incoraggianti in questa fase di progettazione.
Emissions to methanol process via sulfridic acid splitting : multiscale in-silico process development and pilot-scale validation
Anna, Dell'Angelo
2022
Abstract
The scope of the Ph.D. thesis activity is to propose and demonstrate the industrial feasibility of an innovative and sustainable process that improves the production of hydrogen as well as reduces the hydrogen sulfide (H2S) and carbon dioxide (CO2) emissions. This is the new and established technology called SACSTM (Sulfidric Acid Catalytic Splitting). Despite their massive production, H2S and CO2 are two critical pollutants, H2S is toxic and CO2 is responsible for impacts on ecological and environmental system. This thesis aims at investigating this novel promising route effectively integrated with different industrial process like steam reforming and methanol production. H2S is converted according to the following overall reaction: H2S → H2 + 0.5S2 As first, the involved kinetic mechanism was studied, starting from the simplest mechanisms of H2S (i.e., H/S system) pyrolysis up H/S/O/C global system. The kinetic was extensive validated with literature and industrial cases in the well- known conditions of Sulfur Recovery Process. This activity was complemented by building a bench-scale plant to study the effects of the catalytic decomposition of hydrogen sulfide toward hydrogen conversion and coupling it with carbon dioxide into methanol at low pressure. The optimal configuration of the whole process has been studied in a simulation suite Aspen HYSYS and, a complete plant model able to manage the recycle of unconverted acid gases has been developed. The SACS catalytic reactor is simulated with global reactions and in order to account the distribution of sulfur allotropes, the thermodynamic equilibrium is assumed. Then, SACSTM technology is applied to methanol process. The advantages of the novel process are highlighted, both at technical and environmental levels. Finally, the engineering study is then accompanied by a preliminary economic analysis and a life cycle assessment to estimate the environmental performances of the novel process, performed by SimaPro. Different scenarios have been evaluated throughout this work, in particular the two alternatives of a grass-roots plant or a revamping of an existing methanol facility, in which H2S is treated with the Claus process, are considered. The advantages of the revamped process are highlighted, both at technical and environmental levels, are encouraging at this stage of design.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis - Dell'Angelo Anna.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
10.2 MB
Formato
Adobe PDF
|
10.2 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/205827
URN:NBN:IT:POLIMI-205827