The main framework of this work resides in the study and application of Raman spectroscopy as a non-invasive tool for chemical analysis in different fields. This thesis reports the development of new solutions for performing Raman Spectroscopy that exploit different experimental configurations and theoretical calculations of Raman scattering. The first part of the dissertation proposes and validates a new Raman device that was designed in order to perform a stand-off mapping of an area of few square centimeters at a working distance of approximately 30 cm. This device is remarkably suitable for in situ analysis of artworks. The synergic combination of macro-Raman mapping and complementary spectroscopic imaging techniques can easily reveal material composition in complex mixtures. This is particularly useful in conservation science. The second part of the dissertation is focused on the detection of Raman signals in Biological tissues. A new technique named Frequency Offset Raman Spectroscopy (FORS) is proposed. FORS takes advantage of the variation of the optical properties, scattering (μs’) and absorption (μa) over multiple wavelengths in order to probe different depths within the tissue. At low excitation wavelength the medium has high value of μa and μs’, which precludes photons from reaching the deep layer, so that the Raman signal is dominated by the top layer. Upon excitation at higher wavelength, in correspondence of lower μa and μs’ values, photons can propagate deeper so that the contribution of the bottom layer increases. FORS was tested on solid phantoms and resulted a valid alternative with respect to the existing techniques, promising a good viability in the biomedical field.The last part of the dissertation is on the application of Raman spectroscopy combined with Density Functional Theory (DFT) calculation for the characterization of a conductive polythiophene system with a 3D-protection architecture. The π-conjugation of the polymer backbones was investigated in order to point out its relation with the order of the main chain. For that purpose, the results of the fully encapsulated polymer were compared with the one obtained for a defect co-polymers system characterized by some not-encapsulated thiophene units. Experimental Raman spectra supported by DFT calculation demonstrates that the presence of defect units introduces distortion that leads to a decrease of π-conjugation with the appearance of a new R mode at higher frequency. Thanks to the application of Raman spectroscopy from both experimental and theoretical perspective, the advantages and limitations of this spectroscopic technique for characterizing a great variety of materials are explored. They range from precious artworks to organic molecules with promising moieties for optoelectronic applications.
Il tema principale di questo lavoro di tesi consiste nell’applicazione della spettroscopia Raman come strumento non invasivo per l’analisi chimica di diversi campioni in vari campi applicativi. In particolare questa tesi riporta lo sviluppo di nuove configurazioni sperimentali e calcoli teorici (DFT) dello scattering Raman. La prima parte di questa tesi propone e convalida l’utilizzo si un nuovo strumento Raman, appositamente progettato per eseguire una mappatura Raman di diversi centimetri quadrati a una distanza di lavoro di circa 30 cm. Questo dispositivo è particolarmente adatto per l'analisi in situ di opere d'arte.La seconda parte di questo lavoro di tesi si è concentrato sulla rivelazione del segnale Raman di tessuti Biologici. In particolare, si propone un nuovo metodo chiamato Frequency Offset Raman Spectroscopy (FORS). Il metodo FORS sfrutta le diverse proprietà ottiche di scattering (μs’) e assorbimento (μa) del materiale in corrispondenza di diverse lunghezze d’onda di eccitazione per sondare le diverse profondità del tessuto. In corrispondenza di una lunghezza d’onda di eccitazione minore, il mezzo diffondente possiede un valore alto di scattering e assorbimento tale da preclude la propagazione della luce negli strati più profondi, pertanto lo spettro Raman sarà dominato dal contributo degli strati superficiali. Diversamente, in corrispondenza di una lunghezza di eccitazione maggiore, il mezzo diffondente possiede un basso valore di scattering e assorbimento pertanto la luce propaga più in profondità. In queste condizioni il contributo dello strato più profondo aumenta nello spettro Raman acquisito. L’approccio FORS è stato verificato su fantocci solidi con proprietà ottiche simili a quelle di un tipico tessuto biologico ed è risultato una valida alternativa rispetto alle tecniche esistenti.L’ultima parte di questa tesi tratta l’utilizzo della spettroscopia Raman combinata a calcoli DFT per la caratterizzazione di una nuova classe di oligomeri e polimeri conduttivi basati da una catena di poli-tiofeni protetti da una struttura 3D. La coniugazione degli elettroni π lungo la catena principale del nuovo materiale è stata valutata nel caso del polimero completamente protetto e, successivamente, al variare del numero di unità non protette. Gli spettri Raman sperimentali, supportati dai calcoli DFT, hanno evidenziato come l’assenza della protezione 3D attorno alla catena principale comporti una riduzione della coniugazione legata all’aumento della distorsione della catena principale. Vantaggi e limiti della spettroscopia Raman per la caratterizzazione di una larga varietà di materiali sono stati discussi e dimostrati spaziando da preziose opere d’arte fino a nuovi sistemi organici con interessanti proprietà per l’optoelettronica.
Study, design and development of novel devices and methods for Raman spectroscopy
SARA, MOSCA
2018
Abstract
The main framework of this work resides in the study and application of Raman spectroscopy as a non-invasive tool for chemical analysis in different fields. This thesis reports the development of new solutions for performing Raman Spectroscopy that exploit different experimental configurations and theoretical calculations of Raman scattering. The first part of the dissertation proposes and validates a new Raman device that was designed in order to perform a stand-off mapping of an area of few square centimeters at a working distance of approximately 30 cm. This device is remarkably suitable for in situ analysis of artworks. The synergic combination of macro-Raman mapping and complementary spectroscopic imaging techniques can easily reveal material composition in complex mixtures. This is particularly useful in conservation science. The second part of the dissertation is focused on the detection of Raman signals in Biological tissues. A new technique named Frequency Offset Raman Spectroscopy (FORS) is proposed. FORS takes advantage of the variation of the optical properties, scattering (μs’) and absorption (μa) over multiple wavelengths in order to probe different depths within the tissue. At low excitation wavelength the medium has high value of μa and μs’, which precludes photons from reaching the deep layer, so that the Raman signal is dominated by the top layer. Upon excitation at higher wavelength, in correspondence of lower μa and μs’ values, photons can propagate deeper so that the contribution of the bottom layer increases. FORS was tested on solid phantoms and resulted a valid alternative with respect to the existing techniques, promising a good viability in the biomedical field.The last part of the dissertation is on the application of Raman spectroscopy combined with Density Functional Theory (DFT) calculation for the characterization of a conductive polythiophene system with a 3D-protection architecture. The π-conjugation of the polymer backbones was investigated in order to point out its relation with the order of the main chain. For that purpose, the results of the fully encapsulated polymer were compared with the one obtained for a defect co-polymers system characterized by some not-encapsulated thiophene units. Experimental Raman spectra supported by DFT calculation demonstrates that the presence of defect units introduces distortion that leads to a decrease of π-conjugation with the appearance of a new R mode at higher frequency. Thanks to the application of Raman spectroscopy from both experimental and theoretical perspective, the advantages and limitations of this spectroscopic technique for characterizing a great variety of materials are explored. They range from precious artworks to organic molecules with promising moieties for optoelectronic applications.File | Dimensione | Formato | |
---|---|---|---|
2018_02_PhD_Mosca.pdf
Open Access dal 30/01/2019
Dimensione
12.18 MB
Formato
Adobe PDF
|
12.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/206769
URN:NBN:IT:POLIMI-206769