Neurodegenerative diseases occur as the result of progressive loss of structure, function, or even death of neurons. Training4CRM project, funded by the European Union Horizon 2020 Programme, is a highly cross disciplinary project and focuses on bridging the existing gaps within cell-based regenerative medicine for the treatment of neurodegenerative disorders (e.g. Parkinson’s disease, Huntington’s disease, and epilepsy) by joint training and education of 15 Ph.D. students, in 6 European countries, within and across different scientific disciplines. The goal is to master the design, fabrication, integration and testing of completely new tools and materials within the fields of micro and nanoengineering and biotechnology. In this Ph.D. thesis, which is a part of the Training4CRM project, a platform based on commercial off-the-shelf components is proposed to perform optical stimulation and electrochemical measurements on optogenetically modified dopaminergic cells. A laser diode is used as a light source for optical stimulation with an improvement in the power efficiency of the optical stimulation circuit in comparison to the commonly used systems based on LED diodes. A PSoC 63 BLE microcontroller is used to implement a compact solution, including the electrochemical measurement and optical stimulation circuits. The system can be powered by small batteries and remotely controlled using the Bluetooth standard. Thus, it is compatible with a mounting on the head of freely moving rats for in-vivo optogenetic experiments. Moreover, a novel low-power technique is proposed to perform simultaneous multi frequency impedance measurements on cells. The proposed technique is based on a double demodulation of the measured signals, the first in the analog domain and the second in the digital domain. Square wave excitation and demodulation signals are used to allow a compact and low-power implementation in a silicon chip. A set of rules are introduced for selecting the frequencies of excitation and demodulation signals. This helps to avoid superimposing of harmonics due to the first analog down-conversion operation, and improves the measurement accuracy. The proposed technique was implemented and experimentally verified in an integrated circuit in 180 nm TSMC CMOS technology. The chip dissipates only 6 mW, including the analog-to-digital conversion of the signal, and operates up to a frequency of 15 MHz. The proposed chip is also able to perform amperometry and cyclic voltammetry measurements simultaneously with multi-frequency impedance measurements, allowing detailed electrochemical characterizations of the sample under test.
Le malattie neurodegenerative sono causate dalla progressiva perdita di struttura, funzionalità o addirittura morte di neuroni. Il progetto altamente interdisciplinare “Training4CRM”, finanziato dal programma Horizon 2020 dell’Unione Europea, mira a colmare le attuali lacune della medicina rigenerativa basata su cellule per il trattamento dei disturbi neurodegenerativi (ad esempio il morbo di Parkinson, la malattia di Huntington e l’epilessia) attraverso la formazione congiunta di 15 studenti di dottorato, in sei nazioni europee, in differenti discipline scientifiche. L’obiettivo è poter padroneggiare il progetto, la fabbricazione, l’integrazione e la validazione di strumenti e materiali completamente nuovi nei campi della micro-nanoingegneria e della biotecnologia. Questa tesi di dottorato, parte del progetto Training4CRM, propone una piattaforma basata su componenti discreti commerciali per stimolare otticamente neuroni dopaminergici modificati tramite l’optogenetica e misurarne la risposta elettrochimica. Un diodo laser è usato come sorgente luminosa per la stimolazione ottica con un miglioramento dell’efficienza energetica dei circuiti di stimolazione rispetto agli usuali sistemi basati su sorgenti LED. Un microcontrollore PSoC 63 BLE è usato per realizzare una soluzione compatta includendo i circuiti per le misurazioni elettrochimiche e per la stimolazione ottica. Il sistema può essere alimentato con batterie di piccole dimensioni e controllato da remoto usando lo standard Bluetooth. Pertanto, esso è compatibile con un montaggio sulla testa di ratti liberi di muoversi per condurre esperimenti optogenetici in-vivo. In aggiunta a questa piattaforma, si è proposta una nuova tecnica a basso consumo di potenza per realizzare misure di impedenza su cellule simultaneamente su più frequenze. La tecnica proposta è basata su una doppia demodulazione dei segnali misurati, la prima implementata analogicamente e la seconda nel dominio digitale. I segnali di stimolo e di demodulazione sono a onda quadra per permettere un’implementazione compatta e a basso consumo di potenza in un chip di silicio. Un insieme di regole sono introdotte per selezionare le frequenze dei segnali di eccitazione e di demodulazione. Questo aiuta ad evitare la sovrapposizione delle armoniche quando si opera la prima demodulazione analogica e a migliorare l’accuratezza della misura. La tecnica proposta è stata implementata e verificata sperimentalmente usando un circuito integrato realizzato con la tecnologia CMOS a 180 nm della TSMC. Il chip dissipata solo 6 mW, includendo la conversione analogico-digitale del segnale, e opera fino a una frequenza di 15MHz. Il chip proposto è anche in grado di eseguire misure di amperometria e di voltammetria ciclica simultaneamente alla misura di impedenza multifrequenza, permettendo una caratterizzazione elettrochimica dettagliata del campione in esame.
Mixed-Signal Electronics for Optogenetic Experiments and Cell Monitoring
Alireza, Mesri Gendeshmin
2021
Abstract
Neurodegenerative diseases occur as the result of progressive loss of structure, function, or even death of neurons. Training4CRM project, funded by the European Union Horizon 2020 Programme, is a highly cross disciplinary project and focuses on bridging the existing gaps within cell-based regenerative medicine for the treatment of neurodegenerative disorders (e.g. Parkinson’s disease, Huntington’s disease, and epilepsy) by joint training and education of 15 Ph.D. students, in 6 European countries, within and across different scientific disciplines. The goal is to master the design, fabrication, integration and testing of completely new tools and materials within the fields of micro and nanoengineering and biotechnology. In this Ph.D. thesis, which is a part of the Training4CRM project, a platform based on commercial off-the-shelf components is proposed to perform optical stimulation and electrochemical measurements on optogenetically modified dopaminergic cells. A laser diode is used as a light source for optical stimulation with an improvement in the power efficiency of the optical stimulation circuit in comparison to the commonly used systems based on LED diodes. A PSoC 63 BLE microcontroller is used to implement a compact solution, including the electrochemical measurement and optical stimulation circuits. The system can be powered by small batteries and remotely controlled using the Bluetooth standard. Thus, it is compatible with a mounting on the head of freely moving rats for in-vivo optogenetic experiments. Moreover, a novel low-power technique is proposed to perform simultaneous multi frequency impedance measurements on cells. The proposed technique is based on a double demodulation of the measured signals, the first in the analog domain and the second in the digital domain. Square wave excitation and demodulation signals are used to allow a compact and low-power implementation in a silicon chip. A set of rules are introduced for selecting the frequencies of excitation and demodulation signals. This helps to avoid superimposing of harmonics due to the first analog down-conversion operation, and improves the measurement accuracy. The proposed technique was implemented and experimentally verified in an integrated circuit in 180 nm TSMC CMOS technology. The chip dissipates only 6 mW, including the analog-to-digital conversion of the signal, and operates up to a frequency of 15 MHz. The proposed chip is also able to perform amperometry and cyclic voltammetry measurements simultaneously with multi-frequency impedance measurements, allowing detailed electrochemical characterizations of the sample under test.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mixed-Signal Electronics for Optogenetic Experiments and Cell Monitoring.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
44.64 MB
Formato
Adobe PDF
|
44.64 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/206870
URN:NBN:IT:POLIMI-206870