The discovery of graphene in 2004 opened up a new frontier in materials science, sparking widespread interest in two-dimensional (2D) materials. Among 2D materials, transition metal dichalcogenides (TMDs) have garnered significant attention due to their unique optoelectronic properties, atomically thin structure, strong light-matter interactions, and mechanical flexibility. These features make TMDs ideal candidates for next-generation electronic and optoelectronic applications. As promising substitutes for current silicon-based technology, it is crucial to thoroughly understand the physical properties of TMDs and develop methods to control them. Mastery of their optical and electronic behavior is essential for optimizing their performance in real-world applications. This thesis focuses on investigating how external factors such as strain and electrical gating can be used to modulate and enhance these properties, reaching down to the fundamental ultrafast processes occurring on femtosecond timescales. Through our sub-picosecond resolution transient spectroscopic methods, we explore the underlying physics that drive the optoelectronic behavior of TMDs. First, we focus on the study of trions—excitonic complexes formed by an exciton bound to an additional charge carrier. By precisely controlling the doping conditions in electrically gated monolayer TMDs, we investigate the mechanisms of trion formation under various doping regimes. For the first time, we reveal the true nature of all-optical trion formation in monolayer (1L) WS2 and WSe2. Our study sheds light on how trions form via free charges—–originating from either intrinsic or induced doping, or from photogenerated electron-hole pairs, some of which dissociate into free carriers rather than forming excitons. We demonstrate that in both scenarios, trions form on an ultrafast timescale, with a characteristic time of ≤ 200 fs, resolving previous misconceptions in the literature that reported longer formation times. Next, we extend our investigation to many-body physics in TMDs by studying biexcitons and hexcitons in WS2 and WSe2, respectively. By carefully optimizing the experimental conditions, we successfully capture the transient biexciton response. We demonstrate that biexcitons, which are bound states of two excitons, decay on a shorter timescale in comparison to excitons and trions, showing the distinct nature of this many-body state. Furthermore, we also get to the optimal conditions to successfully capture the signal of charged biexcitons in transient measurements. Additionally, the detection of hexcitons in monolayer WSe2 reveals an analogous behaviour to trions, supporting previous hypothesis of hexcitons being the next charged state of trions. Finally, we explore the impact of strain on the optoelectronic properties of TMDs. Strain modulates the band structure of these materials, influencing exciton dynamics, recombination processes, and charge carrier mobility. In monolayer WS2, we demonstrate how uniaxial tensile strain accelerates exciton recombination dynamics through enhanced exciton migration toward recombination centers. We also examine the strain response in WS2 bilayers, uncovering a dependence on interlayer stacking configuration. Overall, this thesis advances our understanding of the ultrafast optical and electronic properties of TMDs, providing new insights into their modulation through external factors. These findings pave the way for the development of TMD-based next-generation technologies that could surpass the limitations of traditional silicon-based systems, contributing to the emergence of cutting-edge applications in nanoelectronics, optoelectronics, and beyond.
Tra la scoperta del grafene nel 2004, si è aperta una nuova frontiera nella scienza deimateriali, suscitando un ampio interesse per i materiali bidimensionali (2D). Tra i materiali 2D, i TMDs (dall’inglese Transition Metal Dichalcogenides) hanno attirato notevole attenzione grazie alle loro uniche proprietà optoelettroniche, alle loro forti interazioni luce-materia e alla loro flessibilità meccanica. Queste caratteristiche rendono i TMD candidati ideali per applicazioni elettroniche e optoelettroniche. Come promettenti sostituti della attuale tecnologia basata su silicio, è cruciale comprendere a fondo le proprietà fisiche dei TMD e sviluppare metodi per controllarle. La conoscenza del loro comportamento ottico ed elettronico è essenziale per ottimizzare le loro prestazioni nelle applicazioni reali. Questa tesi si concentra sull’indagine di come fattori esterni, come la deformazione e il gating elettrico, possano essere utilizzati per modulare e migliorare queste proprietà, fino ai processi fondamentali ultraveloci che avvengono su scale temporali di femtosecondi. Attraverso i nostri metodi spettroscopici con risoluzione sub-picosecondo, esploriamo la fisica sottostante che guida il comportamento optoelet- tronico dei TMD. In primo luogo, ci concentriamo sullo studio dei trioni - complessi eccitonici formati da un eccitone legato a una carica aggiuntiva. Controllando con precisione le condizioni di droggagio nei monolayer (1L) TMD sottoposti a gating elettrico, indaghiamo i meccanismi di formazione dei trioni sotto vari regimi di droggagio. Per la prima volta, riveliamo la vera natura della formazione dei trioni in 1L-WS2 e 1L-WSe2. Il nostro studio chiarisce come i trioni si formino tramite cariche libere—originanti sia dal drogaggio intrinseco che indotto, sia da coppie elettrone-lacuna fotogenerate, alcune delle quali si dissociano in portatori liberi piuttosto che formare eccitoni. Dimostriamo che, in entrambi i casi, i trioni si formano su una scala temporale ultraveloce, con un tempo caratteristico di ≤ 200 fs, risolvendo precedenti misconcezioni nella letteratura che riportavano tempi di formazione più lunghi. Successivamente, estendiamo la nostra indagine agli stati complessi nei TMD, studiando in particolare stati a quattro e sei corpi. Gli stati a quattro corpi (biexcitons in inglese), formati da due eccitoni legati, rappresentano un’opportunità per esplorare le interazioni tra più particelle nei materiali bidimensionali. Nel monolayer di WS2, rileviamo la risposta transitoria di questi stati, dimostrando che il loro decadimento avviene su una scala temporale più breve rispetto a eccitoni e trioni, evidenziando la natura distinta di questi stati legati. In condizioni specifiche, osserviamo anche la presenza di stati a quattro corpi caricati (charged biexcitons). Inoltre, l’osservazione di stati a sei corpi (hexcitons in inglese) nel monolayer di WSe2 conferma l’esistenza di complessi eccitonici di ordine superiore, ampliando la nostra comprensione delle dinamiche tra particelle nei materiali bidimensionali. Infine, esploriamo l’impatto della deformazione sulle proprietà optoelettroniche dei TMD. La deformazione modula la struttura di banda di questi materiali, influenzando la dinamica degli eccitoni, i processi di ricombinazione e la mobilità dei portatori di carica. In 1L-WS2, dimostriamo come la deformazione uniaxiale tesa accelera la dinamica di ricombinazione degli eccitoni attraverso un miglioramento della migrazione degli eccitoni verso i centri di ricombinazione. Esaminiamo anche la risposta alla deformazione nei bilayers di WS2, rivelando una dipendenza dalla configurazione di impilamento interstrati. Nel complesso, questa tesi avanza la nostra comprensione delle proprietà ottiche ed elettroniche ultraveloci dei TMD, fornendo nuovi spunti sulla loro modulazione attraverso fattori esterni. Questi risultati aprono la strada allo sviluppo di tecnologie di prossima generazione basate sui TMD che potrebbero superare le limitazioni dei sistemi basati sul silicio tradizionali, contribuendo all’emergere di applicazioni all’avanguardia in nanoelettronica, optoelettronica e oltre.
Control of the ultrafast optoelectronic properties of 2D transition metal dichalcogenides
Irantzu, Landa Garcia
2024
Abstract
The discovery of graphene in 2004 opened up a new frontier in materials science, sparking widespread interest in two-dimensional (2D) materials. Among 2D materials, transition metal dichalcogenides (TMDs) have garnered significant attention due to their unique optoelectronic properties, atomically thin structure, strong light-matter interactions, and mechanical flexibility. These features make TMDs ideal candidates for next-generation electronic and optoelectronic applications. As promising substitutes for current silicon-based technology, it is crucial to thoroughly understand the physical properties of TMDs and develop methods to control them. Mastery of their optical and electronic behavior is essential for optimizing their performance in real-world applications. This thesis focuses on investigating how external factors such as strain and electrical gating can be used to modulate and enhance these properties, reaching down to the fundamental ultrafast processes occurring on femtosecond timescales. Through our sub-picosecond resolution transient spectroscopic methods, we explore the underlying physics that drive the optoelectronic behavior of TMDs. First, we focus on the study of trions—excitonic complexes formed by an exciton bound to an additional charge carrier. By precisely controlling the doping conditions in electrically gated monolayer TMDs, we investigate the mechanisms of trion formation under various doping regimes. For the first time, we reveal the true nature of all-optical trion formation in monolayer (1L) WS2 and WSe2. Our study sheds light on how trions form via free charges—–originating from either intrinsic or induced doping, or from photogenerated electron-hole pairs, some of which dissociate into free carriers rather than forming excitons. We demonstrate that in both scenarios, trions form on an ultrafast timescale, with a characteristic time of ≤ 200 fs, resolving previous misconceptions in the literature that reported longer formation times. Next, we extend our investigation to many-body physics in TMDs by studying biexcitons and hexcitons in WS2 and WSe2, respectively. By carefully optimizing the experimental conditions, we successfully capture the transient biexciton response. We demonstrate that biexcitons, which are bound states of two excitons, decay on a shorter timescale in comparison to excitons and trions, showing the distinct nature of this many-body state. Furthermore, we also get to the optimal conditions to successfully capture the signal of charged biexcitons in transient measurements. Additionally, the detection of hexcitons in monolayer WSe2 reveals an analogous behaviour to trions, supporting previous hypothesis of hexcitons being the next charged state of trions. Finally, we explore the impact of strain on the optoelectronic properties of TMDs. Strain modulates the band structure of these materials, influencing exciton dynamics, recombination processes, and charge carrier mobility. In monolayer WS2, we demonstrate how uniaxial tensile strain accelerates exciton recombination dynamics through enhanced exciton migration toward recombination centers. We also examine the strain response in WS2 bilayers, uncovering a dependence on interlayer stacking configuration. Overall, this thesis advances our understanding of the ultrafast optical and electronic properties of TMDs, providing new insights into their modulation through external factors. These findings pave the way for the development of TMD-based next-generation technologies that could surpass the limitations of traditional silicon-based systems, contributing to the emergence of cutting-edge applications in nanoelectronics, optoelectronics, and beyond.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_thesis_IrantzuLanda.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
36.72 MB
Formato
Adobe PDF
|
36.72 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/206920
URN:NBN:IT:POLIMI-206920