The Drug Development Pipeline (DDP) is a lengthy and costly process for the pharmaceutical industries developing new drugs, with costs exceeding 1 billion euros per compound and a timeline of around 10-15 years. This pipeline includes diverse phases such as drug discovery and development, preclinical research, and clinical trials, each characterized by specific activities and objectives. Preclinical research faces the challenge of accurately predicting human responses to new compounds, which are traditionally performed using animal models or traditional in vitro systems. Despite their widespread exploitation, these models fall short in accurately mirror human physiology, leading to erroneous predictions and consequent drug withdrawals, especially notable in cardiac assessment. To address this issue, the European Union is proposing new legislations embracing the Three Rs principle (replacement, reduction and refinement), focusing on minimizing animal use and suffering in scientific research. Concerning cardiotoxicity assessment, regulatory agencies have formulated guidelines to capture drug-induced QT interval prolongation and pro-arrhythmic effect. In particular, the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative aims to develop improved assays for assessing the risks of drugs by recognizing the limitations of traditional methods in predicting cardiotoxicity and focusing on the validation of new alternatives based on in silico and human in vitro models. However, the CiPA initiative relies on 2D cardiac models, which have limitations in accurately replicating the heart's three-dimensional complexity. This gap has induced the development and implementation of advanced preclinical platforms, crucial for enhancing the accuracy of cardiac drug assessment and reducing the dependence on animal models. These advancements promise to revolutionize drug discovery, especially in cardiac research, by offering precise, ethical and efficient evaluation models. One of the most promising developments in this field is the emergence of Organs-on-Chip (OoC) technologies, miniaturized platforms able to provide cells with physiologically relevant stimulations (i.e. chemical and physical) and incorporating sensing systems to directly assess model functionality. Taking benefit of microfluidics, these systems provide a closer mimicking of human physiology and pathology than conventional in vitro models, offering the possibility to improve the clinically relevance of the generated models and to better study human-specific responses. In this context, BiomimX developed a heart-on-chip (also known as uHeart) with an integrated patented technology (uBeat®) able to provide physiological-like uniaxial stretching to 3D microconstructs, that was demonstrated instrumental to improve the generated cardiac model functionality. Initial studies have focused on developing robust physiological models, and further research is anticipated to explore the potential of uHeart as a valuable tool in the DDP. This PhD thesis aimed to the qualification and enhancement of uHeart as a potent tool for accurately predicting drug-induced cardiotoxicity and for modelling cardiac disorders towards patient-specific drug efficacy studies. By integrating biological insights and technological advancements, this work positions uHeart at the forefront of current cardiac in vitro systems, offering a significant improvement in the reliability of drug cardiotoxicity and efficacy assessment. The initial section of this thesis presents the validation of the uHeart platform for assessing drug-induced functional cardiotoxicity. Using the electrical measurement capabilities of uHeart, 11 compounds suggested by the CiPA initiative were evaluated at incremental dosages. This evaluation employed 3D cardiac microtissues developed using human cardiomyocytes derived from induced pluripotent stem cells (h-iPSC-CMs) and human dermal fibroblasts (hDF). Using a custom-made algorithm for the analysis, the study demonstrated the ability of uHeart in recapitulating the drug-induced changes in key electrophysiological parameters of uHeart, such as beating period (BP), Field Potential (FP) duration, FP amplitude, and the detection of arrhythmic events. The findings highlighted uHeart's effective prediction, demonstrating its proficiency in identifying QT prolongation with 83.3% sensitivity, 100% specificity, and 91.6% accuracy. The platform was particularly effective in detecting cardiotoxic drug concentrations within the clinical peak blood drug concentration range (Cmax), establishing uHeart as a suitable and reliable preclinical tool for cardiotoxicity studies. In the second section of the thesis, the development of a disease model of Dilated Cardiomyopathy (DCM) within uHeart is presented. The model was formed by using cardiomyocytes differentiated from iPSCs from a DCM patient and its isogenic control. By comparing both models, we could study the effects of mechanical stimulation on cardiac microtissues structure and function, revealing significant changes in intercellular connectivity and fiber orientation. Our findings showed distinct responses in calcium wave propagation and contractility, and the pharmacological tests highlighted differential impacts on DCM versus control cardiac microconstructs. This innovative model offers insights into DCM pathophysiology and opens the potential for drug testing and deeper understanding of DCM-induced changes in physiological cardiac response. Finally, an improvement of the system was proposed, by integrating a Multiple Electrode Array (MEA) platform into the heart-on-chip, which is referred to as uMEA. After several iterations to address various technical constraints, the newly designed platform provided improved spatial resolution in monitoring the electrical activity of the cardiac microconstructs. The embedded system facilitated real-time monitoring while preserving sterility. Notably, we developed a custom-made bioamplifier to acquire microconstructs’ electrophysiological signals and enabling the measurements of conduction velocity within our heart-on-chip, providing a promising feature for future applications in drug testing and disease modeling. In this PhD thesis, both technical and biological innovations were achieved. These advancements include: i) validating uHeart as a preclinical model for assessing drug cardiotoxicity, ii) modeling Dilated Cardiomyopathy within our heart-on-chip system, and iii) developing uMEA, a MEA platform integrated to our uHeart for real-time measurements of microconstructs’ electrophysiology and electrical conduction velocity. uHeart was demonstrated to be promising to be exploited as an alternative to current in vitro systems and animal models, offering more accurate prediction tools for the drug discovery and development pipeline.
La pipeline di sviluppo dei farmaci (DDP) è un processo lungo e costoso per le industrie farmaceutiche che sviluppano nuovi farmaci, con costi che superano 1 miliardo di euro per composto e una durata di circa 10-15 anni. Questa pipeline include fasi diverse come la scoperta e lo sviluppo del farmaco, la ricerca preclinica e le sperimentazioni cliniche, ciascuna caratterizzata da attività e obiettivi specifici. La ricerca preclinica affronta la sfida di prevedere accuratamente le risposte umane a nuovi composti, tradizionalmente eseguita utilizzando modelli animali o sistemi in vitro convenzionali. Nonostante il loro ampio utilizzo, questi modelli non riescono a rispecchiare con precisione la fisiologia umana, portando a previsioni errate e al conseguente ritiro di farmaci, un problema particolarmente evidente nella valutazione cardiaca. Per affrontare questa problematica, l'Unione Europea sta proponendo nuove normative che abbracciano il principio delle Tre R (sostituzione, riduzione e perfezionamento), concentrandosi sulla riduzione dell'uso e della sofferenza degli animali nella ricerca scientifica. Per quanto riguarda la valutazione della cardiotossicità, le agenzie regolatorie hanno formulato linee guida per rilevare l'allungamento dell'intervallo QT indotto dai farmaci e l'effetto pro-aritmico. In particolare, l'iniziativa CiPA (Comprehensive in vitro Proarrhythmia Assay) mira a sviluppare test migliorati per valutare i rischi dei farmaci, riconoscendo i limiti dei metodi tradizionali nella previsione della cardiotossicità e concentrandosi sulla validazione di nuove alternative basate su modelli in silico e in vitro umani. Tuttavia, l'iniziativa CiPA si basa su modelli cardiaci 2D, che presentano limitazioni nel replicare accuratamente la complessità tridimensionale del cuore. Questo divario ha stimolato lo sviluppo e l'implementazione di piattaforme precliniche avanzate, cruciali per migliorare l'accuratezza della valutazione dei farmaci cardiaci e ridurre la dipendenza dai modelli animali. Questi progressi promettono di rivoluzionare la scoperta dei farmaci, in particolare nella ricerca cardiaca, offrendo modelli di valutazione più precisi, etici ed efficienti. Uno degli sviluppi più promettenti in questo campo è l'emergere delle tecnologie Organs-on-Chip (OoC), piattaforme miniaturizzate in grado di fornire alle cellule stimolazioni fisiologicamente rilevanti (chimiche e fisiche) e di integrare sistemi di rilevamento per valutare direttamente la funzionalità del modello. Sfruttando la microfluidica, questi sistemi offrono una migliore imitazione della fisiologia e della patologia umana rispetto ai modelli in vitro convenzionali, migliorando la rilevanza clinica dei modelli generati e permettendo uno studio più accurato delle risposte specifiche dell'uomo. In questo contesto, BiomimX ha sviluppato un cuore su chip (noto anche come uHeart) con una tecnologia brevettata integrata (uBeat®), in grado di fornire uno stiramento uniaxiale simile a quello fisiologico ai microcostrutti 3D, dimostrato essenziale per migliorare la funzionalità del modello cardiaco generato. Gli studi iniziali si sono concentrati sullo sviluppo di modelli fisiologici robusti, e ulteriori ricerche sono previste per esplorare il potenziale di uHeart come strumento prezioso nel processo di sviluppo dei farmaci. Questa tesi di dottorato mirava alla qualificazione e al miglioramento di uHeart come strumento potente per prevedere accuratamente la cardiotossicità indotta dai farmaci e per modellare i disturbi cardiaci verso studi sull'efficacia dei farmaci specifici per il paziente. Integrando approfondimenti biologici e progressi tecnologici, questo lavoro posiziona uHeart all'avanguardia dei sistemi cardiaci in vitro attuali, offrendo un miglioramento significativo nella affidabilità della valutazione della cardiotossicità e dell'efficacia dei farmaci. La sezione iniziale di questa tesi presenta la validazione della piattaforma uHeart per la valutazione della cardiotossicità funzionale indotta dai farmaci. Utilizzando le capacità di misurazione elettrica di uHeart, 11 composti suggeriti dall'iniziativa CiPA sono stati valutati a dosaggi incrementali. Questa valutazione ha impiegato microtessuti cardiaci 3D sviluppati utilizzando cardiomiociti umani derivati da cellule staminali pluripotenti indotte (h-iPSC-CMs) e fibroblasti dermici umani (hDF). Utilizzando un algoritmo personalizzato per l'analisi, lo studio ha dimostrato la capacità di uHeart di ricapitolare i cambiamenti indotti dai farmaci nei principali parametri elettrofisiologici di uHeart, come il periodo di battito (BP), la durata del Potenziale, la ampiezza del potenziale di campo (FP) e il rilevamento di eventi aritmici. I risultati hanno evidenziato l'efficacia predittiva di uHeart, dimostrando la sua capacità nel rilevare il prolungamento del QT con una sensibilità dell'83,3%, una specificità del 100% e un'accuratezza del 91,6%. La piattaforma si è rivelata particolarmente efficace nel rilevare concentrazioni cardiotossiche di farmaci all'interno del range di concentrazione massima nel sangue clinico (Cmax), stabilendo uHeart come uno strumento preclinico adatto e affidabile per gli studi di cardiotossicità. Nella seconda sezione della tesi, viene presentato lo sviluppo di un modello di malattia della cardiomiopatia dilatativa (DCM) all'interno di uHeart. Il modello è stato creato utilizzando cardiomiociti differenziati da cellule staminali pluripotenti indotte (iPSC) di un paziente affetto da DCM e il suo controllo isogenico. Confrontando entrambi i modelli, abbiamo potuto studiare gli effetti della stimolazione meccanica sulla struttura e funzione dei microtessuti cardiaci, rivelando cambiamenti significativi nella connettività intercellulare e nell'orientamento delle fibre. I nostri risultati hanno mostrato risposte distinte nella propagazione delle onde di calcio e nella contrattilità, e i test farmacologici hanno evidenziato impatti differenziali sui microcostrutti cardiaci di DCM rispetto ai controlli. Questo modello innovativo offre nuove prospettive sulla fisiopatologia della DCM e apre la possibilità di testare farmaci e comprendere meglio i cambiamenti indotti dalla DCM nella risposta fisiologica cardiaca. Infine, è stato proposto un miglioramento del sistema, integrando una piattaforma a Elettrodi Multipli (MEA) nel cuore su chip, denominata uMEA. Dopo diverse iterazioni per affrontare vari vincoli tecnici, la nuova piattaforma ha fornito una risoluzione spaziale migliorata nel monitoraggio dell'attività elettrica dei microcostrutti cardiaci. Il sistema integrato ha facilitato il monitoraggio in tempo reale preservando la sterilità. In particolare, abbiamo sviluppato un bioamplificatore su misura per acquisire i segnali elettrofisiologici dei microcostrutti e permettere la misurazione della velocità di conduzione all'interno del nostro cuore su chip, fornendo una caratteristica promettente per future applicazioni nella sperimentazione di farmaci e nella modellizzazione delle malattie. In questa tesi di dottorato, sono stati raggiunti progressi sia tecnici che biologici. Questi avanzamenti includono: i) la validazione di uHeart come modello preclinico per la valutazione della cardiotossicità indotta dai farmaci, ii) la modellizzazione della cardiomiopatia dilatativa all'interno del nostro sistema cuore su chip, e iii) lo sviluppo di uMEA, una piattaforma MEA integrata al nostro uHeart per misurazioni in tempo reale dell'elettrofisiologia dei microcostrutti e della velocità di conduzione elettrica. uHeart si è dimostrato promettente come alternativa ai sistemi in vitro attuali e ai modelli animali, offrendo strumenti di previsione più accurati per la pipeline di scoperta e sviluppo dei farmaci.
UHeart: an in vitro human heart-on-chip platform for detection of drug-induced functional cardiotoxicity and genetic disease modelling
Ferran, Lozano Juan
2024
Abstract
The Drug Development Pipeline (DDP) is a lengthy and costly process for the pharmaceutical industries developing new drugs, with costs exceeding 1 billion euros per compound and a timeline of around 10-15 years. This pipeline includes diverse phases such as drug discovery and development, preclinical research, and clinical trials, each characterized by specific activities and objectives. Preclinical research faces the challenge of accurately predicting human responses to new compounds, which are traditionally performed using animal models or traditional in vitro systems. Despite their widespread exploitation, these models fall short in accurately mirror human physiology, leading to erroneous predictions and consequent drug withdrawals, especially notable in cardiac assessment. To address this issue, the European Union is proposing new legislations embracing the Three Rs principle (replacement, reduction and refinement), focusing on minimizing animal use and suffering in scientific research. Concerning cardiotoxicity assessment, regulatory agencies have formulated guidelines to capture drug-induced QT interval prolongation and pro-arrhythmic effect. In particular, the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative aims to develop improved assays for assessing the risks of drugs by recognizing the limitations of traditional methods in predicting cardiotoxicity and focusing on the validation of new alternatives based on in silico and human in vitro models. However, the CiPA initiative relies on 2D cardiac models, which have limitations in accurately replicating the heart's three-dimensional complexity. This gap has induced the development and implementation of advanced preclinical platforms, crucial for enhancing the accuracy of cardiac drug assessment and reducing the dependence on animal models. These advancements promise to revolutionize drug discovery, especially in cardiac research, by offering precise, ethical and efficient evaluation models. One of the most promising developments in this field is the emergence of Organs-on-Chip (OoC) technologies, miniaturized platforms able to provide cells with physiologically relevant stimulations (i.e. chemical and physical) and incorporating sensing systems to directly assess model functionality. Taking benefit of microfluidics, these systems provide a closer mimicking of human physiology and pathology than conventional in vitro models, offering the possibility to improve the clinically relevance of the generated models and to better study human-specific responses. In this context, BiomimX developed a heart-on-chip (also known as uHeart) with an integrated patented technology (uBeat®) able to provide physiological-like uniaxial stretching to 3D microconstructs, that was demonstrated instrumental to improve the generated cardiac model functionality. Initial studies have focused on developing robust physiological models, and further research is anticipated to explore the potential of uHeart as a valuable tool in the DDP. This PhD thesis aimed to the qualification and enhancement of uHeart as a potent tool for accurately predicting drug-induced cardiotoxicity and for modelling cardiac disorders towards patient-specific drug efficacy studies. By integrating biological insights and technological advancements, this work positions uHeart at the forefront of current cardiac in vitro systems, offering a significant improvement in the reliability of drug cardiotoxicity and efficacy assessment. The initial section of this thesis presents the validation of the uHeart platform for assessing drug-induced functional cardiotoxicity. Using the electrical measurement capabilities of uHeart, 11 compounds suggested by the CiPA initiative were evaluated at incremental dosages. This evaluation employed 3D cardiac microtissues developed using human cardiomyocytes derived from induced pluripotent stem cells (h-iPSC-CMs) and human dermal fibroblasts (hDF). Using a custom-made algorithm for the analysis, the study demonstrated the ability of uHeart in recapitulating the drug-induced changes in key electrophysiological parameters of uHeart, such as beating period (BP), Field Potential (FP) duration, FP amplitude, and the detection of arrhythmic events. The findings highlighted uHeart's effective prediction, demonstrating its proficiency in identifying QT prolongation with 83.3% sensitivity, 100% specificity, and 91.6% accuracy. The platform was particularly effective in detecting cardiotoxic drug concentrations within the clinical peak blood drug concentration range (Cmax), establishing uHeart as a suitable and reliable preclinical tool for cardiotoxicity studies. In the second section of the thesis, the development of a disease model of Dilated Cardiomyopathy (DCM) within uHeart is presented. The model was formed by using cardiomyocytes differentiated from iPSCs from a DCM patient and its isogenic control. By comparing both models, we could study the effects of mechanical stimulation on cardiac microtissues structure and function, revealing significant changes in intercellular connectivity and fiber orientation. Our findings showed distinct responses in calcium wave propagation and contractility, and the pharmacological tests highlighted differential impacts on DCM versus control cardiac microconstructs. This innovative model offers insights into DCM pathophysiology and opens the potential for drug testing and deeper understanding of DCM-induced changes in physiological cardiac response. Finally, an improvement of the system was proposed, by integrating a Multiple Electrode Array (MEA) platform into the heart-on-chip, which is referred to as uMEA. After several iterations to address various technical constraints, the newly designed platform provided improved spatial resolution in monitoring the electrical activity of the cardiac microconstructs. The embedded system facilitated real-time monitoring while preserving sterility. Notably, we developed a custom-made bioamplifier to acquire microconstructs’ electrophysiological signals and enabling the measurements of conduction velocity within our heart-on-chip, providing a promising feature for future applications in drug testing and disease modeling. In this PhD thesis, both technical and biological innovations were achieved. These advancements include: i) validating uHeart as a preclinical model for assessing drug cardiotoxicity, ii) modeling Dilated Cardiomyopathy within our heart-on-chip system, and iii) developing uMEA, a MEA platform integrated to our uHeart for real-time measurements of microconstructs’ electrophysiology and electrical conduction velocity. uHeart was demonstrated to be promising to be exploited as an alternative to current in vitro systems and animal models, offering more accurate prediction tools for the drug discovery and development pipeline.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis_Lozano_XXXV_cycle.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
10.36 MB
Formato
Adobe PDF
|
10.36 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/206968
URN:NBN:IT:POLIMI-206968