Time measurement is essential in many academic, research and industrial fields such as high-energy physics, medical imaging, computer vision, spectroscopy and many others, where the time-of-flight of various particles is used to infer another physical dimension of interest. Being time measurement important in many fields, various Time-to-Digital Converters (TDC) solutions have been developed in both the academia and the industry. Time precision is the main figure of merit of TDCs, but the number of input channels and maximum measurement rate are the current bottleneck in many applications. Those requirements are pushing the challenges in the design of such instruments away from the time-measurement core towards the data elaboration part, which should be able to manage, elaborate and transmit or store an enormous amount of data produced by the measurement core. Given such strict requirements, in many projects the time converters are developed and optimized ad-hoc to carry out the specific task. While this approach can be sustained for large and medium scale applications, it is inconvenient for research tasks or niche projects where the human and economic resources are often not enough to develop an efficient time converter solution. While readily-available general-purpose time converters do exist, they often lack the needed performance or they have been heavily optimized for a particular application making them very difficult or nearly impossible to be used for different setups other than the original one. The aim of this work is to fill the above focused gap by providing an high-performance, general-purpose time converter that can be easily integrated in a wide number of different experimental setups during the research and development in both the academia and the industry. As an analogy, this work can be seen as an attempt to create an instrument as flexible and useful as an oscilloscope, that instead of analyzing the amplitude of signal, determines their time of arrival. In order to achieve this ambitious goal, several software solutions and FPGA-implemented digital architectures have been developed, leading to the creation of an innovative high-performance, general-purpose, easy to integrate desktop TDC device. The instrument has been validated during various collaboration with external laboratories that carried out a wide range of time-resolved experiments using the developed device.
La misurazione del tempo è essenziale in molti campi accademici, di ricerca e industriali come la fisica delle alte energie, l'imaging medico, la computer vision, la spettroscopia e molti altri, dove il tempo di volo di varie particelle viene utilizzato per dedurre un'altra dimensione fisica di interesse. Essendo la misurazione del tempo importante in molti campi, sono state sviluppate varie soluzioni Time-to-Digital Converter (TDC) sia nel mondo accademico che nell'industria. La precisione temporale è la principale caratteristica dei TDC, ma il numero di canali di ingresso e la velocità di misurazione massima sono l'attuale collo di bottiglia in molte applicazioni. Tali requisiti stanno spostando le sfide nella progettazione di tali strumenti dal core di misurazione del tempo verso la parte di elaborazione dei dati, che deve essere in grado di gestire, elaborare e trasmettere o archiviare l'enorme quantità di dati prodotti dal core di misurazione. Dati tali requisiti stringenti, in molti progetti i convertitori di tempo vengono sviluppati e ottimizzati ad hoc per svolgere il compito specifico. Sebbene questo approccio possa essere sostenuto per applicazioni su larga e media scala, è spesso infattibile per attività di ricerca o piccoli progetti in cui le risorse umane ed economiche spesso non sono sufficienti per sviluppare una soluzione efficiente di misurazione del tempo. Sebbene esistano convertitori di tempo generici facilmente reperibili, spesso non hanno le prestazioni necessarie o sono stati ampiamente ottimizzati per un'applicazione particolare, rendendoli molto difficili o quasi impossibili da utilizzare per configurazioni diverse da quella originale. Lo scopo di questo lavoro è colmare questa la lacuna realizzando un convertitore di tempo generico ad alte prestazioni che può essere facilmente integrato in un ampio numero di diversi esperimenti sia nel mondo accademico che nell'industria. Come analogia, questo lavoro può essere visto come un tentativo di creare uno strumento flessibile e utile come un oscilloscopio, che invece di analizzare l'ampiezza del segnale, ne determina il tempo di arrivo. Per raggiungere questo ambizioso obiettivo, sono state sviluppate diverse soluzioni software e architetture digitali implementate tramite FPGA, che hanno portato alla creazione di un innovativo dispositivo TDC ad alte prestazioni, di uso generale e di facile integrazione. Lo strumento è stato validato durante varie collaborazioni con laboratori esterni che hanno eseguito un'ampia gamma di esperimenti time-resolved utilizzando il dispositivo sviluppato.
High-performance general-purporse digital architectures for elaboration of time-related measurements
ENRICO, RONCONI
2024
Abstract
Time measurement is essential in many academic, research and industrial fields such as high-energy physics, medical imaging, computer vision, spectroscopy and many others, where the time-of-flight of various particles is used to infer another physical dimension of interest. Being time measurement important in many fields, various Time-to-Digital Converters (TDC) solutions have been developed in both the academia and the industry. Time precision is the main figure of merit of TDCs, but the number of input channels and maximum measurement rate are the current bottleneck in many applications. Those requirements are pushing the challenges in the design of such instruments away from the time-measurement core towards the data elaboration part, which should be able to manage, elaborate and transmit or store an enormous amount of data produced by the measurement core. Given such strict requirements, in many projects the time converters are developed and optimized ad-hoc to carry out the specific task. While this approach can be sustained for large and medium scale applications, it is inconvenient for research tasks or niche projects where the human and economic resources are often not enough to develop an efficient time converter solution. While readily-available general-purpose time converters do exist, they often lack the needed performance or they have been heavily optimized for a particular application making them very difficult or nearly impossible to be used for different setups other than the original one. The aim of this work is to fill the above focused gap by providing an high-performance, general-purpose time converter that can be easily integrated in a wide number of different experimental setups during the research and development in both the academia and the industry. As an analogy, this work can be seen as an attempt to create an instrument as flexible and useful as an oscilloscope, that instead of analyzing the amplitude of signal, determines their time of arrival. In order to achieve this ambitious goal, several software solutions and FPGA-implemented digital architectures have been developed, leading to the creation of an innovative high-performance, general-purpose, easy to integrate desktop TDC device. The instrument has been validated during various collaboration with external laboratories that carried out a wide range of time-resolved experiments using the developed device.| File | Dimensione | Formato | |
|---|---|---|---|
|
thesis.pdf
accesso solo da BNCF e BNCR
Licenza:
Tutti i diritti riservati
Dimensione
5.28 MB
Formato
Adobe PDF
|
5.28 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/206975
URN:NBN:IT:POLIMI-206975