Now more than ever, the world is facing the problems deriving from a fossil-fuel based economy: from one side, the complete depletion of oil wells is estimated to occur within 50 years, while from the other fossil fuels industries emit 35. 92 Gt of CO2 each year, increasing day by day the greenhouse gases release in the atmosphere. To reduce the fossil fuel dependence, the world is exploring the use of alternative renewable energy sources, but it is also necessary to take into account that 30% of crude oil is nowadays used by chemical industries. Besides being an oil derivative, plastic takes a long time to decompose and is not easily recyclable, leading to plastic accumulation and negative impact on the environment and the organisms living on earth, especially for the creation of microplastic, often mistaken for food by fish or animals. Despite these drawbacks, polymers are fundamental to secure the present quality of life and to develop new technologies. Even though their consummation can be reduced, their application is in almost every sector such as packaging, building, textile and transportation. Bio-based and biodegradable polymers arise from the need of finding a solution to all the problems depicted above, where the degradability can reduce the microplastic accumulation and the bio-derivation can decrease the oil exploitation and carbon dioxide emission. The main difference between oil-based and bio-based monomers is that the latter have high heteroatom contents but at the same time they lack reactive double bonds. While the heteroatoms presence leaves room for functionalization and molecule modification, the lack or small reactivity of double bonds blocks the possibility of employing them in the “standard” industrial polymerisation such as free radical polymerisation in bulk, emulsion or solution. Even if ways to increase the reactivity of the bio-based double-bonds are continuously investigated, at the moment a partial solution consists in the addition of the double bond through epoxidation/acylation creating highly-but not fully bio-based monomers that could homopolymerise or co-polymerise with oil-based monomers creating hybrid particles. After a brief introduction about bio-based polymer and polymerization techniques (Chapter 1), the first two works are indeed focused on the use of partially bio-based monomers to create polymer particles for different applications. In particular in Chapter 2 describes a way to valorise glycerol, a bio-based by-product of the biodiesel industry, and CO2, whose capture from the atmosphere and re-utilization is one of the last year’s hottest topic. More in details, amphiphilic block copolymers made of glycerol and glycerol carbonate, derived from glycerol and CO2, were produced via RAFT polymerization. These block copolymers possess a bio-derived content higher than 50% and are able to create narrowly dispersed NPs when put in water. Finally, the NPs were tested to be used in the biomedical field by studying their degradation in aqueous environments and ability to encapsulate and release a drug. However, the use of bio-based product for biomedical applications can only slightly contribute in reducing the use of oil-based monomer due to the niche application in which small amounts of material are used. Moving towards an industrial level, Chapter 3 highlights the synthesis of highly-biobased redispersible polymer powder to be produced ideally on a large scale as waterproofing or air-entrainment concrete additives. Non-biodegradable waterproofing additives were synthesised from lauryl acrylate and isobornyl methacrylate while air entrainment additives were set to be degradable by using poly(lactic acid), whose degradation is triggered at alkaline pH, like concrete ones. The two set of additives have been synthesised via a two-step emulsion polymerisation in water to create core-shell particles with softer core and harder shell with at least a 50% bio-percentage and spray-dried to create an easy-to-handle powder that could be mixed directly with concrete and the desired amount of water. The main drawback in using bio-based polymers is given by the higher prices of the raw material respect to the oil-based one. Air entrainment additives are mainly constituted of HEMA-LA4 oligomers, that are a lactic acid-based macromonomer produced via ring opening polymerization (ROP) of lactide initiated by 2-hydroxyethyl methacrylate (HEMA). Aside from working as initiator, HEMA possess a double bond that makes the oligomer polymerization/copolymerization via radical techniques feasible. However, 30% of the final cost of producing PLA is given by the synthesis of lactide from lactic acid, necessary if high molecular weight are targeted. Indeed, even if PLA can be produced directly from lactic acid through polycondensation, the achievement of high molecular weight is hindered by water creation as by-product. Nevertheless, in our work we employed short HEMA-LA4 oligomers that due to the small chain length could be synthesised also by polycondensation. In Chapter 4 the synthesis of HEMALAn oligomers via polycondensation and ring opening polymerization is compared in terms of kinetics, conversions, molecular weight and molecular weight populations both experimentally and with a modelling approach to find the most convenient synthesis route between the two. In all the works reported so far, partially bio-based polymers constituted by a bio-based lateral chain and a oil-based backbone were synthesised and used for different applications, from biological to industrial. The double bond coming from the oil-based part allows radical polymerization reactions. However, the use of partially bio-based monomers is an immediate but limited solution to the dependence from oil-based resources. For this reason, ways to increase the reactivity of the bio-based double-bonds are being investigated in the meanwhile to fully understand and exploit the properties of these materials. Concerning the latter topic, Chapter 5 describes a study on the radical polymerization of crotonic acid, that is a fully bio-derived monomer. It was found that while it is almost unreactive towards homopolymerisation and copolymerisation with vinyls and acrylates, if copolymerised with MDO, a cyclic ketene acetal, gives rise to a 50% biobased 50% mol/mol biodegradable copolymer structure. The polymerization kinetic and final copolymer structure have been investigated in details with the goal of creating crotonates-MDO copolymer with high monomer conversion to be used for various applications (i.e. packaging). As previously stated in the introduction, it is estimated that in 2052 the wells will completely run out of oil. However, the reservoir lifespan end does not coincide with the moment in which all the available oil is extracted, but is identified as the period in which the operating cost does not exceeds the benefit expected from the oil extraction. Operating cost increase is mainly influenced by the produced water, that is the water collected as by-product during the extraction of oil and natural gas and derives from high permeability layers, fractures, or water coning phenomena. Water purification before its discharge in the sea and well structure corrosion costs lead to the abandonment of the reservoir long before the oil complete depletion. The abandonment of the already-opened reservoir and the search for new ones is problematic both from the industrial and environmental point of view. Water shut off operations are all those techniques that focus on eliminating the unwanted water production and can be both mechanical or chemical. In the Appendix, a way to use polymers to reduce the extracted water is described. If from one side the transition from an oil-based to a greener bio-based economy is becoming mandatory, from the other lowering the environmental impact and exploiting the resources at the maximum possibility, can lead to a beneficial and in some way sustainable effect.
Ora più che mai, il mondo sta affrontando i problemi derivanti da un'economia basata sui combustibili fossili: da un lato, è stato stimato l'esaurimento completo dei pozzi di petrolio entro 50 anni, mentre dall'altro le industrie dei combustibili fossili emettono 35.92 Gt di CO2 ogni anno, aumentando di giorno in giorno il rilascio di gas serra nell'atmosfera. Per diminuire la dipendenza dai combustibili fossili si sta cercando di utilizzare fonti alternative di energia rinnovabile, ma bisogna anche considerare che il 30% del greggio viene invece utilizzato dalle industrie chimiche. Oltre ad essere un derivato del petrolio, la plastica impiega molto tempo per decomporsi e non è facilmente riciclabile, il che comporta un suo accumulo che impatta negativamente sull'ambiente e sugli organismi viventi, soprattutto a causa della formazione di microplastiche, spesso confuse per cibo da pesci e animali. Nonostante questi inconvenienti, i polimeri sono fondamentali per garantire l'attuale qualità della vita e per sviluppare nuove tecnologie. Anche se il loro consumo può essere ridotto, trovano applicazione in praticamente ogni settore, dall'imballaggio all'edilizia, al tessile e al trasporto. I polimeri di origine biologica e biodegradabili nascono dalla necessità di trovare una soluzione a tutti i problemi menzionati, ove la degradabilità può ridurre l'accumulo di microplastiche e la bio-derivazione può limitare l'utilizzo di petrolio e l'emissione di biossido di carbonio. La differenza principale tra i monomeri a base di petrolio e quelli a base biologica è che questi ultimi hanno un alto contenuto di eteroatomi, ma al tempo stesso non contengono doppi legami reattivi. Mentre la presenza di eteroatomi consente una più facile funzionalizzazione e modifica della molecola, la mancanza o scarsa reattività dei doppi legami ostacola il loro impiego nelle polimerizzazione industriali "standard", come la radicalica. Per superare questo problema da un lato si cerca di trovare dei metodi per aumentare la reattività dei doppi legami bio-based, ,mentre al contempo una soluzione parziale e più immediata consiste nell'aggiunta del doppio legame tramite epossidazione/acilazione creando monomeri altamente - ma non completamente - bio-based che potrebbero omopolimerizzare o copolimerizzare con monomeri a base di petrolio creando particelle ibride. Dopo una breve introduzione sui polimeri bio-based e sulle tecniche di polimerizzazione (Capitolo 1), i primi due lavori sono infatti focalizzati sull'uso di monomeri parzialmente bio-based per creare particelle polimeriche per diverse applicazioni. In particolare nel Capitolo 2 viene descritto un modo per valorizzare il glicerolo, un sottoprodotto bio-based dell'industria del biodiesel, e la CO2, la cui cattura dall'atmosfera e riutilizzo è uno dei temi più caldi dell'ultimo anno. Più in dettaglio, sono stati prodotti tramite polimerizzazione RAFT copolimeri a blocchi anfifilici fatti di glicerolo e glicerolo carbonato, derivati da glicerolo e CO2. Questi copolimeri a blocchi possiedono un contenuto di carbonio bio-derivato superiore al 50% e sono in grado di creare NPs monodisperse se nanoprecipitati in acqua. Infine, le NP sono state testate per essere utilizzate in campo biomedico mediante lo studio della loro degradazione in ambienti acquosi e della capacità di incapsulare e rilasciare un farmaco. Tuttavia, i prodotti bio-based per applicazioni biomediche possono contribuire solo leggermente a ridurre il consumo di petrolio a causa della loro applicazione in un settore di nicchia in cui vengono utilizzate piccole quantità di materiale. Passando ad un livello industriale, il capitolo 3 evidenzia la sintesi di polveri polimeriche ri-disperdibili con alto contenuto bio-derivato da produrre idealmente su larga scala come additivi per il calcestruzzo per aumentarne l'impermeabilizzazione o il quantitativo di pori (aeranti). In particolare, additivi impermeabilizzanti non biodegradabili sono stati sintetizzati da acrilato di laurile e metacrilato di isobornile, mentre quelli aeranti sono stati concepiti per essere degradabili mediante l'uso di acido polilattico, il cui degrado viene velocizzato a pH alcalino, come quello del calcestruzzo. Entrambi gli additivi sono stati sintetizzati tramite una polimerizzazione in emulsione a due step in acqua per creare particelle core-shell con un nucleo più morbido e un guscio più duro con almeno il 50% di percentuale bio e seccati per mezzo di uno spray-drier per creare una polvere facile da maneggiare che possa essere mescolata direttamente con il calcestruzzo e la quantità desiderata di acqua. Lo svantaggio principale nell'uso di polimeri a base biologica è dato dai prezzi più alti della materia prima rispetto a quella petrolio-derivata. Gli additivi aeranti sono costituiti principalmente da HEMA-LA4, ossia macromonomeri a base di acido lattico prodotti tramite la polimerizzazione ad apertura d'anello (ROP) del lattide iniziata dal 2-idrossietil metacrilato (HEMA). Oltre a funzionare come iniziatore, l'HEMA possiede un doppio legame che rende possibile la polimerizzazione/copolimerizzazione dell'oligomero tramite polimerizzazioni radicaliche. Tuttavia, il 30% del costo finale della produzione di PLA è dato dalla sintesi del lattide dall'acido lattico, step necessario se si punta ad un alto peso molecolare. Infatti, anche se il PLA può essere prodotto direttamente dall'acido lattico attraverso la policondensazione, il raggiungimento di un alto peso molecolare è ostacolato dalla creazione di acqua come sottoprodotto, cosa che non accade creando prima il lattide e poi procedendo con una ROP. Bisogna però considerare che per produrre gli additivi aeranti abbiamo impiegato oligomeri HEMA-LA4 corti che, data la lunghezza di catena, potrebbero essere sintetizzati anche per policondensazione. Nel capitolo 4 la sintesi di oligomeri HEMALAn tramite policondensazione e polimerizzazione ad apertura di anello viene confrontata in termini di cinetica, conversioni, peso molecolare e popolazioni sia sperimentalmente che con un approccio modellistico per trovare la via di sintesi più conveniente tra le due. In tutti i lavori riportati finora, sono stati sintetizzati polimeri parzialmente bio costituiti da una catena laterale bio e da un backbone a base di petrolio, utilizzati per diverse applicazioni, da quelle biologiche a quelle industriali. Il doppio legame proveniente dalla parte a base di petrolio consente la polimerizzazione per via radicale. Tuttavia, l'uso di monomeri parzialmente bio-based è una soluzione immediata ma limitata alla dipendenza dalle risorse petrolifere. Per questo motivo, si sta studiando una maniera di aumentare la reattività dei doppi legami bio-based per comprendere e sfruttare appieno le proprietà di questi materiali. Riguardo a quest'ultimo argomento, il capitolo 5 descrive uno studio sulla polimerizzazione radicale dell'acido crotonico, che è un monomero completamente bio-derivato. Si è scoperto che anche se non è reattivo quando omopolimerizzato/copolimerizzato con vinili e acrilati, se invece viene copolimerizzato con MDO, un chetene acetale ciclico, dà origine ad un copolimero per metà biobased e per metà biodegradabile. La cinetica di polimerizzazione e la struttura finale del copolimero sono state studiate in dettaglio con l'obiettivo di creare un copolimero crotonato-MDO ad alta conversione da utilizzare per varie applicazioni (es. packaging). Come già detto nell'introduzione, si stima che nel 2052 si esaurirà completamente il petrolio. Tuttavia, il fine vita del giacimento non coincide con il momento in cui tutto il petrolio disponibile viene estratto, ma viene identificato come il periodo in cui il costo operativo non supera il beneficio atteso dall'estrazione del petrolio. L'aumento dei costi operativi è influenzato principalmente dall'acqua di produzione, ossia l'acqua raccolta come sottoprodotto durante l'estrazione di petrolio e gas naturale e derivante da strati ad alta permeabilità, fratture o fenomeni di coning dell'acqua. La depurazione dell'acqua prima che venga scaricata in mare e i costi di corrosione della struttura del pozzo portano all'abbandono del pozzo molto prima del completo esaurimento del petrolio. L'abbandono di un giacimento già aperto e la ricerca di nuovi giacimenti è problematica sia dal punto di vista industriale che ambientale. Le operazioni di water shut off sono tutte quelle tecniche che si concentrano sull'eliminazione della produzione di acqua indesiderata e possono essere sia meccaniche che chimiche. In appendice viene descritto un modo di utilizzare i polimeri per ridurre l'acqua di produzione. Se da un lato la transizione da un'economia basata sul petrolio a una più sostenibile sta diventando impellente, dall'altro abbassare l'impatto ambientale e sfruttare le risorse petrolifere al massimo delle loro possibilità può portare a un effetto ambientale benefico.
From oil-based to bio-based polymers : use of new bio-based monomers for biomedical and industrial applications
ARIANNA, ZANONI
2022
Abstract
Now more than ever, the world is facing the problems deriving from a fossil-fuel based economy: from one side, the complete depletion of oil wells is estimated to occur within 50 years, while from the other fossil fuels industries emit 35. 92 Gt of CO2 each year, increasing day by day the greenhouse gases release in the atmosphere. To reduce the fossil fuel dependence, the world is exploring the use of alternative renewable energy sources, but it is also necessary to take into account that 30% of crude oil is nowadays used by chemical industries. Besides being an oil derivative, plastic takes a long time to decompose and is not easily recyclable, leading to plastic accumulation and negative impact on the environment and the organisms living on earth, especially for the creation of microplastic, often mistaken for food by fish or animals. Despite these drawbacks, polymers are fundamental to secure the present quality of life and to develop new technologies. Even though their consummation can be reduced, their application is in almost every sector such as packaging, building, textile and transportation. Bio-based and biodegradable polymers arise from the need of finding a solution to all the problems depicted above, where the degradability can reduce the microplastic accumulation and the bio-derivation can decrease the oil exploitation and carbon dioxide emission. The main difference between oil-based and bio-based monomers is that the latter have high heteroatom contents but at the same time they lack reactive double bonds. While the heteroatoms presence leaves room for functionalization and molecule modification, the lack or small reactivity of double bonds blocks the possibility of employing them in the “standard” industrial polymerisation such as free radical polymerisation in bulk, emulsion or solution. Even if ways to increase the reactivity of the bio-based double-bonds are continuously investigated, at the moment a partial solution consists in the addition of the double bond through epoxidation/acylation creating highly-but not fully bio-based monomers that could homopolymerise or co-polymerise with oil-based monomers creating hybrid particles. After a brief introduction about bio-based polymer and polymerization techniques (Chapter 1), the first two works are indeed focused on the use of partially bio-based monomers to create polymer particles for different applications. In particular in Chapter 2 describes a way to valorise glycerol, a bio-based by-product of the biodiesel industry, and CO2, whose capture from the atmosphere and re-utilization is one of the last year’s hottest topic. More in details, amphiphilic block copolymers made of glycerol and glycerol carbonate, derived from glycerol and CO2, were produced via RAFT polymerization. These block copolymers possess a bio-derived content higher than 50% and are able to create narrowly dispersed NPs when put in water. Finally, the NPs were tested to be used in the biomedical field by studying their degradation in aqueous environments and ability to encapsulate and release a drug. However, the use of bio-based product for biomedical applications can only slightly contribute in reducing the use of oil-based monomer due to the niche application in which small amounts of material are used. Moving towards an industrial level, Chapter 3 highlights the synthesis of highly-biobased redispersible polymer powder to be produced ideally on a large scale as waterproofing or air-entrainment concrete additives. Non-biodegradable waterproofing additives were synthesised from lauryl acrylate and isobornyl methacrylate while air entrainment additives were set to be degradable by using poly(lactic acid), whose degradation is triggered at alkaline pH, like concrete ones. The two set of additives have been synthesised via a two-step emulsion polymerisation in water to create core-shell particles with softer core and harder shell with at least a 50% bio-percentage and spray-dried to create an easy-to-handle powder that could be mixed directly with concrete and the desired amount of water. The main drawback in using bio-based polymers is given by the higher prices of the raw material respect to the oil-based one. Air entrainment additives are mainly constituted of HEMA-LA4 oligomers, that are a lactic acid-based macromonomer produced via ring opening polymerization (ROP) of lactide initiated by 2-hydroxyethyl methacrylate (HEMA). Aside from working as initiator, HEMA possess a double bond that makes the oligomer polymerization/copolymerization via radical techniques feasible. However, 30% of the final cost of producing PLA is given by the synthesis of lactide from lactic acid, necessary if high molecular weight are targeted. Indeed, even if PLA can be produced directly from lactic acid through polycondensation, the achievement of high molecular weight is hindered by water creation as by-product. Nevertheless, in our work we employed short HEMA-LA4 oligomers that due to the small chain length could be synthesised also by polycondensation. In Chapter 4 the synthesis of HEMALAn oligomers via polycondensation and ring opening polymerization is compared in terms of kinetics, conversions, molecular weight and molecular weight populations both experimentally and with a modelling approach to find the most convenient synthesis route between the two. In all the works reported so far, partially bio-based polymers constituted by a bio-based lateral chain and a oil-based backbone were synthesised and used for different applications, from biological to industrial. The double bond coming from the oil-based part allows radical polymerization reactions. However, the use of partially bio-based monomers is an immediate but limited solution to the dependence from oil-based resources. For this reason, ways to increase the reactivity of the bio-based double-bonds are being investigated in the meanwhile to fully understand and exploit the properties of these materials. Concerning the latter topic, Chapter 5 describes a study on the radical polymerization of crotonic acid, that is a fully bio-derived monomer. It was found that while it is almost unreactive towards homopolymerisation and copolymerisation with vinyls and acrylates, if copolymerised with MDO, a cyclic ketene acetal, gives rise to a 50% biobased 50% mol/mol biodegradable copolymer structure. The polymerization kinetic and final copolymer structure have been investigated in details with the goal of creating crotonates-MDO copolymer with high monomer conversion to be used for various applications (i.e. packaging). As previously stated in the introduction, it is estimated that in 2052 the wells will completely run out of oil. However, the reservoir lifespan end does not coincide with the moment in which all the available oil is extracted, but is identified as the period in which the operating cost does not exceeds the benefit expected from the oil extraction. Operating cost increase is mainly influenced by the produced water, that is the water collected as by-product during the extraction of oil and natural gas and derives from high permeability layers, fractures, or water coning phenomena. Water purification before its discharge in the sea and well structure corrosion costs lead to the abandonment of the reservoir long before the oil complete depletion. The abandonment of the already-opened reservoir and the search for new ones is problematic both from the industrial and environmental point of view. Water shut off operations are all those techniques that focus on eliminating the unwanted water production and can be both mechanical or chemical. In the Appendix, a way to use polymers to reduce the extracted water is described. If from one side the transition from an oil-based to a greener bio-based economy is becoming mandatory, from the other lowering the environmental impact and exploiting the resources at the maximum possibility, can lead to a beneficial and in some way sustainable effect.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_AriannaZanoni.pdf
accesso solo da BNCF e BNCR
Dimensione
8.66 MB
Formato
Adobe PDF
|
8.66 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/207258
URN:NBN:IT:POLIMI-207258