Accurate prediction of electromagnetic compatibility (EMC) performance of nonuniform multiconductor transmission lines (NUTLs) is of paramount importance for developing proper mitigation techniques to ensure system operation reliability, and often challenging for EMC engineers from several industrial sectors in terms of precise geometrical modeling and fast solution. The aim of this research is to develop advanced modeling techniques for NUTLs, especially for 1) geometrical modeling and fast solution of hand-assembled bundle harnesses, which are crucial steps to provide essential information about the amount of noise to be expected, and 2) efficient block characterization of NUTLs using a perturbative technique, characterized by both high computational speed and enhanced flexibility. First, in this dissertation, a new modeling approach to generate wire bundles with geometry accurately mimicking the random displacements of the wires in real, hand-assembled bundles is proposed. To this end, the wire trajectories are modeled by three-dimensional curves that retain continuity of the wire path and its first derivative, allow enforcing random fluctuations of wire position in the bundle cross-section and controlling bundle density. An iterative algorithm involving both local and global perturbation of initially-generated trajectories is used to prevent wire overlapping. As a whole, the proposed modeling approach is able to reproduce (through the use of a limited number of parameters) the main physical properties of real hand-assembled wire bundles. In order to get either deterministic or statistical estimates of the EMC performance, the obtained bundle geometry can be easily imported into 3D electromagnetic solvers or modeled as a Multiconductor Transmission Line (MTL) by approximating the nonuniform wire paths as a sequence of uniform cascaded sections. Application examples aimed at the prediction of crosstalk and field-to-wire coupling are used to prove the importance of accurate modeling of the bundle geometry and proper digitization of the bundle along its length for prediction at high frequencies of the electromagnetic noise induced in the terminal units. While the first part deals with wire bundles approximately parallel to the ground, the parametric representation of a more generic bundle structure with arbitrary orientation is developed then, and several extensions to the modeling process, e.g. modeling bundles of twisted-wire pairs and interconnecting different bundles, are discussed, allowing for a more realistic characterization of real-world bundles. The generated bundle geometry is used in combination with full-wave and transmission-line based simulation, providing accurate prediction of the noise induced at the bundle terminals due to crosstalk between wires and due to an external electromagnetic field. To this end, a fast, numerical MTL model is developed for predicting the radiated susceptibility of arbitrarily oriented wire bundle structures illuminated by a possibly nonuniform electromagnetic field. The proposed method foresees the modeling of nonuniform MTL via cascading of equivalent uniform MTLs with pertinent lumped sources derived by Agrawal representation and accounting for field-to-wire coupling effects, considering suitable discretization and sampling of the wire bundle geometry as well as the incident electromagnetic field. In particular, the arbitrary bundle orientation is accounted for by taking into consideration the projection of field onto the bundle direction, and by considering the actual wire lengths inside bundle. The proposed examples proved the validity of the proposed algorithm and the need for accurate representation and discretization of the bundle if reliable predictions in a wide frequency interval are the target, and also highlighted the significantly improved efficiency of the proposed technique compared with full-wave solution. Also, a novel procedure for the frequency-domain solution of NUTLs is presented. The procedure is based on a recently-proposed perturbative technique, which is proven to be computationally more efficient than standard solution approaches, which are based on line subdivision into uniform cascaded sections (UCS). With respect to the original perturbation technique, the procedure proposed here offers more flexibility, as it provides a representation of the NUTL under analysis in terms of S- and/or T-parameters at its ports. Moreover, it retains the same prediction accuracy at the price of a slight increase in computational burden, which can be mitigated anyway through parallel-computing. Furthermore, even without ad hoc (parallel) implementations, the proposed procedure outperforms other approaches to solve differential lines with partially- or fully-repetitive geometries. Namely, it assures accurate prediction of output quantities with reduced simulation time. This is proven by three application examples, namely two differential trapezoidal tabbed lines (one with interdigital tabs and one with facing tabs) and a differential microstrip line with a varying common-mode (CM) impedance (as such reducing CM noise). Comparison with full-wave simulations allows assessing the prediction accuracy of the proposed procedure. Comparison with the aforementioned transmission-line based solutions allows appreciating the enhanced computational efficiency. Finally, in the appendix, a systematic procedure to derive equivalent circuit networks accurately reproducing the frequency response of the input impedance of magnetic cores in a broad frequency range is presented. The research is based on a collaboration project with Montena sa., Switzerland. The proposed procedure foresees to represent the effective complex permeability spectra of a magnetic core (i.e., the permeability resulting from the superposition of intrinsic material properties and effects due to structural features of the core) by a high-order Debye series expansion, which is subsequently synthesized into suitable Foster and Cauer networks. Such networks can be implemented in any circuit simulator, and are particularly favorable for time-domain transient simulation since they can be easily combined with hysteresis models. Two nanocrystalline tape-wound cores and a commercial bulk current injection probe are used as test cases to prove the effectiveness of the proposed method both in terms of accuracy and ease of implementation.
La previsione delle caratteristiche di compatibilità elettromagnetica (EMC) di linee di trasmissione multiconduttore non uniformi (NUTL) è di fondamentale importanza per lo sviluppo di opportune tecniche di mitigazione finalizzate a garantire l’affidabilità e il corretto funzionamento funzionamento di sistemi complessi e rappresenta una sfida in diversi settori industriali. Scopo di questa ricerca è la messa a punto di tecniche di modellazione avanzate per linee di trasmissione non uniformi, con particolare riferimento a 1) modellazione geometrica del cablaggio (spesso realizzato a mano e di geometria difficilmente controllabile) e soluzione ottimizzata del corrispondente problema di compatibilità elettromagnetica per fornire informazioni essenziali sulla quantità di rumore indotto, e 2) sviluppo di tecniche innovative per la soluzione di linee non unifomi, caratterizzate da flessibilità e elevata velocità di calcolo. In primo luogo, in questa tesi, viene proposto un nuovo approccio di modellazione per generare fasci di fili con una geometria che riproduca accuratamente gli spostamenti casuali dei fili in fasci reali assemblati a mano. A tal fine, i conduttori sono modellati a mezzo di curve tridimensionali, che garantiscono la continuità della traiettoria (e della sua derivata prima), consentendo allo stesso tempo scambi casuali e aleatori delle posizioni dei conduttori nella sezione trasversale del fascio. La sovrapposizione dei conduttori lungo il fascio viene evitata mediante un algoritmo iterativo che induce perturbazioni sia locali sia globali delle traiettorie generate inizialmente. Nel complesso, l'approccio di modellazione proposto è in grado di riprodurre (attraverso l'utilizzo di un numero limitato di parametri) le principali proprietà geometriche di cablaggi complessi senza ricorrere alle drastiche semplicazioni, che limitano l’applicabilità dei modelli attualmente in letteratura. Per ottenere stime deterministiche o statistiche delle prestazioni EMC, la geometria del cablaggio così ottenuta può essere facilmente importata in solutori elettromagnetici 3D o modellata come una linea di trasmissione multiconduttore (MTL). Nella tesi si propongono esempi applicativi finalizzati ad analisi di diafonia (crosstalk) e immunità radiata, per i quali l’accurata modellazione della geometria del fascio riveste un ruolo di fondamentale importanza, al fine di predire in modo accurato i livelli di interferenza indotti alle terminazioni. L’analisi, inizialmente focalizzata su cablaggi approssimativamente paralleli al terreno, viene poi estesa alla rappresentazione parametrica di strutture filari caratterizzate da orientamento arbitrario. Inoltre, si discutono diverse estensioni del processo di modellazione, al fine di consentire la modellazione di fasci di coppie di fili intrecciati oppure di strutture filari complesse ottenute mediante interconnessione di diversi fasci. La descrizione geometrica così ottenuta può essere facilmente importata in software di simulazione elettromagnetica oppure utilizzata in combinazione con modelli predittivi bastati sulla teoria delle linee di trasmissione per ottenere previsioni accurate del rumore indotto alle terminazioni del fascio per effeto di fenomeni di diafonia tra i conduttori o per l’interfrenza indotta da un campo elettromagnetico incidente. A tal fine, viene sviluppato un modello numerico basato su linee di trasmissione e ottimizzato dal punto di vista dei tempi di calcolo per prevedere la suscettibilità radiata di strutture filari con orientamento arbitrario illuminate da un campo elettromagnetico esterno possibilmente non uniforme. Il metodo proposto prevede la modellazione della linea non uniforme mediante cascata di segmenti di linea con sezione approssimativamente uniforme, in cui gli effetti di accoppiamento con il campo interferente sono rappresentati mediante opportune sorgenti di rumore. Gli esempi presentati dimostrano la validità dell'algoritmo proposto e la necessità di una accurata rappresentazione e discretizzazione del fascio al fine di ottenere previsioni accurate in un ampio intervallo di frequenza. Inoltre, il confronto con simulazioni elettromagnetiche permette di apprezzare la significativa riduzione dei tempi di calcolo ottenuta mediante la tecnica proposta. Viene presentata, inoltre, una nuova procedura per la soluzione nel dominio della frequenza delle NUTL. La procedura si basa su una tecnica perturbativa proposta di recente, che si è dimostrata più efficiente dal punto di vista computazionale rispetto agli approcci di soluzione standard. Rispetto alla tecnica perturbativa originale, la procedura qui proposta offre maggiore flessibilità, in quanto fornisce una rappresentazione del linea in termini di parametri Scattering alle porte esterne, consentendo, quindi, la combinazione di linee diverse. La tecnica proposta mantiene la medesima accuratezza della tecnica originale, con vantaggi in termini di tempo di calcolo se combinata con tecniche di calcolo parallelo. Inoltre, la procedura proposta risulta particolarmente conveniente dal punto di vista computazionale per la soluzione di linee differenziali caratterizzate da geometrie periodiche. L’efficacia e efficienza computazionale della procedura proposta sono investigate mediante tre esempi di applicazione, che coinvolgono linee differenziali in microstriscia su circuiti stampati. Infine, l’appendice presenta una procedura sistematica per la derivazione di circuiti equivalenti, che riproducono accuratamente la risposta in frequenza dell'impedenza di ingresso di nuclei magnetici in un'ampia gamma di frequenze. La ricerca, sviluppata nel periodo di Dottorato anche se non completamente pertinente con gli obiettivi della tesi, documenta parte del lavoro svolto nell’ambito di un progetto di collaborazione con Montena sa., Svizzera. La procedura proposta prevede di rappresentare gli spettri effettivi di permeabilità di un nucleo magnetico (ovvero la permeabilità risultante dalla sovrapposizione di proprietà intrinseche del materiale ed effetti dovuti alle caratteristiche strutturali del nucleo) mediante espansione in serie di Debye di ordine elevato, che viene successivamente sintetizzato mediante opportune reti di Foster e Cauer. Tali reti possono essere implementate in qualsiasi simulatore circutale e sono particolarmente favorevoli per la simulazione di transitori nel dominio del tempo poiché possono essere facilmente combinate con modelli di isteresi. L’efficacia del metodo proposto viene dimostrata mediante misure sperimentali effettuate su due nuclei nanocristallini e su una pinza di iniezione per Bulk Current Injection (BCI).
Advanced modelling techniques for electromagnetic compatibility and signal integrity characterization of nonuniform multiconductor transmission lines
Xiaokang, Liu
2021
Abstract
Accurate prediction of electromagnetic compatibility (EMC) performance of nonuniform multiconductor transmission lines (NUTLs) is of paramount importance for developing proper mitigation techniques to ensure system operation reliability, and often challenging for EMC engineers from several industrial sectors in terms of precise geometrical modeling and fast solution. The aim of this research is to develop advanced modeling techniques for NUTLs, especially for 1) geometrical modeling and fast solution of hand-assembled bundle harnesses, which are crucial steps to provide essential information about the amount of noise to be expected, and 2) efficient block characterization of NUTLs using a perturbative technique, characterized by both high computational speed and enhanced flexibility. First, in this dissertation, a new modeling approach to generate wire bundles with geometry accurately mimicking the random displacements of the wires in real, hand-assembled bundles is proposed. To this end, the wire trajectories are modeled by three-dimensional curves that retain continuity of the wire path and its first derivative, allow enforcing random fluctuations of wire position in the bundle cross-section and controlling bundle density. An iterative algorithm involving both local and global perturbation of initially-generated trajectories is used to prevent wire overlapping. As a whole, the proposed modeling approach is able to reproduce (through the use of a limited number of parameters) the main physical properties of real hand-assembled wire bundles. In order to get either deterministic or statistical estimates of the EMC performance, the obtained bundle geometry can be easily imported into 3D electromagnetic solvers or modeled as a Multiconductor Transmission Line (MTL) by approximating the nonuniform wire paths as a sequence of uniform cascaded sections. Application examples aimed at the prediction of crosstalk and field-to-wire coupling are used to prove the importance of accurate modeling of the bundle geometry and proper digitization of the bundle along its length for prediction at high frequencies of the electromagnetic noise induced in the terminal units. While the first part deals with wire bundles approximately parallel to the ground, the parametric representation of a more generic bundle structure with arbitrary orientation is developed then, and several extensions to the modeling process, e.g. modeling bundles of twisted-wire pairs and interconnecting different bundles, are discussed, allowing for a more realistic characterization of real-world bundles. The generated bundle geometry is used in combination with full-wave and transmission-line based simulation, providing accurate prediction of the noise induced at the bundle terminals due to crosstalk between wires and due to an external electromagnetic field. To this end, a fast, numerical MTL model is developed for predicting the radiated susceptibility of arbitrarily oriented wire bundle structures illuminated by a possibly nonuniform electromagnetic field. The proposed method foresees the modeling of nonuniform MTL via cascading of equivalent uniform MTLs with pertinent lumped sources derived by Agrawal representation and accounting for field-to-wire coupling effects, considering suitable discretization and sampling of the wire bundle geometry as well as the incident electromagnetic field. In particular, the arbitrary bundle orientation is accounted for by taking into consideration the projection of field onto the bundle direction, and by considering the actual wire lengths inside bundle. The proposed examples proved the validity of the proposed algorithm and the need for accurate representation and discretization of the bundle if reliable predictions in a wide frequency interval are the target, and also highlighted the significantly improved efficiency of the proposed technique compared with full-wave solution. Also, a novel procedure for the frequency-domain solution of NUTLs is presented. The procedure is based on a recently-proposed perturbative technique, which is proven to be computationally more efficient than standard solution approaches, which are based on line subdivision into uniform cascaded sections (UCS). With respect to the original perturbation technique, the procedure proposed here offers more flexibility, as it provides a representation of the NUTL under analysis in terms of S- and/or T-parameters at its ports. Moreover, it retains the same prediction accuracy at the price of a slight increase in computational burden, which can be mitigated anyway through parallel-computing. Furthermore, even without ad hoc (parallel) implementations, the proposed procedure outperforms other approaches to solve differential lines with partially- or fully-repetitive geometries. Namely, it assures accurate prediction of output quantities with reduced simulation time. This is proven by three application examples, namely two differential trapezoidal tabbed lines (one with interdigital tabs and one with facing tabs) and a differential microstrip line with a varying common-mode (CM) impedance (as such reducing CM noise). Comparison with full-wave simulations allows assessing the prediction accuracy of the proposed procedure. Comparison with the aforementioned transmission-line based solutions allows appreciating the enhanced computational efficiency. Finally, in the appendix, a systematic procedure to derive equivalent circuit networks accurately reproducing the frequency response of the input impedance of magnetic cores in a broad frequency range is presented. The research is based on a collaboration project with Montena sa., Switzerland. The proposed procedure foresees to represent the effective complex permeability spectra of a magnetic core (i.e., the permeability resulting from the superposition of intrinsic material properties and effects due to structural features of the core) by a high-order Debye series expansion, which is subsequently synthesized into suitable Foster and Cauer networks. Such networks can be implemented in any circuit simulator, and are particularly favorable for time-domain transient simulation since they can be easily combined with hysteresis models. Two nanocrystalline tape-wound cores and a commercial bulk current injection probe are used as test cases to prove the effectiveness of the proposed method both in terms of accuracy and ease of implementation.File | Dimensione | Formato | |
---|---|---|---|
Xiaokang_PhD_thesis.pdf
accesso solo da BNCF e BNCR
Dimensione
20.1 MB
Formato
Adobe PDF
|
20.1 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/207287
URN:NBN:IT:POLIMI-207287