Cancer is a leading cause of death worldwide. In particular, colorectal cancer is one of the most widespread. Despite the huge efforts made over the last few decades to find effective treatments, the failure rate is still high. A deeper understanding of cancer molecular biology is necessary to anticipate and elucidate drug-resistance mechanism to emerging molecular target agents. However, current technologies, such as high-throughput screening systems and standard cell cultures provide results poorly correlated with clinical outcomes because they are unable to mimic in vivo complexity in a high-throughput fashion. This PhD work has been developed within the project “Single-cell cancer evolution in the clinics”, co-funded by Cancer research UK and AIRC. The main goal is the development of an industrializable high-throughput microfluidic platform for the study of tumour progression and drug resistance mechanism. It should become a tool available in the clinics, to predict the effect of chemotherapy drugs on patient-derived cancer cells. The overall microfluidic device consists of two main layers. The top layer is meant for the culture of organoids embedded in a matrigel™ matrix, while the bottom one is responsible for the perfusion and the controlled delivery of drugs within a multi-well plate, where the matrigel™ drops are dipped. Specifically, this PhD thesis focused on the design and optimization of the microfluidic systems and their automation. To obtain an automatic and homogeneous distribution of matrigel™ containing patient-derived organoids, I have developed a custom-made volumetric extrusion bioprinter with specific dispensing systems. For droplets deposition, a custom-made cartridge was designed and tested, while, for large-scale constructs, I have implemented different types of needles to obtain standard or coaxial bioprinting. The results achieved show significant improvements over existing technologies as they can provide reliable results with one-step processes and with reduced reagents consumption. Moreover, I also worked on the design of the bottom layer. Specifically, I designed the wells, the collection system and the automation to provide both cell culture medium perfusion or tuneable drug administration profiles for a better evaluation of drug response. The results obtained with the single well demonstrated the feasibility of the system also for experiments in cell culture incubators for long time experiments. The system was designed to avoid cross-talks and cross-contaminations between the wells, while maintaining a high-throughput format. Furthermore, to better understand cellular response at single-cell layer, I have also worked on an automated microfluidic system exploiting droplet microfluidic strategy. In particular, two impedance sensors were used to detect droplets and triggering the different device operations to optimize droplets synchronization and merging, crucial steps for multi-omics analyses or barcoding and still an unmet need.
Il cancro è una delle principali cause di morte in tutto il mondo. In particolare, il cancro al colon-retto è uno dei più diffusi. Nonostante gli enormi sforzi compiuti negli ultimi decenni per trovare trattamenti efficaci, il tasso di fallimento è ancora alto. È necessaria una comprensione più approfondita della biologia molecolare del cancro per anticipare e chiarire il meccanismo di resistenza ai farmaci per gli agenti molecolari target emergenti. Tuttavia, le tecnologie attuali, come i sistemi di screening high-throughput e le colture cellulari standard, forniscono risultati scarsamente correlati con gli esiti clinici perché non sono in grado di imitare la complessità in vivo in modo high-throughput. Questo lavoro di dottorato è stato sviluppato nell'ambito del progetto “Single-cell cancer evolution in the clinics”, co-finanziato da Cancer research UK e AIRC. L'obiettivo principale è lo sviluppo di una piattaforma microfluidica high-throughput industrializzabile per lo studio della progressione tumorale e del meccanismo di resistenza ai farmaci. Dovrebbe diventare uno strumento disponibile in ambito clinico per prevedere l'effetto dei farmaci chemioterapici sulle cellule tumorali derivate dal paziente. Il dispositivo microfluidico complessivo è costituito da due strati principali. Lo strato superiore è destinato alla coltura di organoidi inglobati in matrigel™, mentre quello inferiore è responsabile della perfusione e della somministrazione controllata di farmaci all'interno di una piastra a più pozzetti, dove vengono immerse le gocce di matrigel™. In particolare, questa tesi di dottorato si è concentrata sulla progettazione e l'ottimizzazione dei sistemi microfluidici e la loro automazione. Per ottenere una distribuzione automatica e omogenea di matrigel™ contenente organoidi derivati dal paziente, ho sviluppato una biostampante di estrusione volumetrica su misura con specifici sistemi di erogazione. Per la deposizione delle gocce è stata progettata e testata una cartuccia custom, mentre, per costrutti su larga scala, ho implementato diversi tipi di aghi per ottenere bioprinting standard o coassiale. I risultati ottenuti mostrano miglioramenti significativi rispetto alle tecnologie esistenti in quanto possono fornire risultati affidabili con processi in un'unica fase e con un consumo ridotto di reagenti. Inoltre, ho anche lavorato al design dello strato inferiore. In particolare, ho progettato i pozzetti, il sistema di raccolta e l'automazione per fornire sia la perfusione del mezzo di coltura cellulare che i profili di somministrazione del farmaco regolabili per una migliore valutazione della risposta al farmaco. I risultati ottenuti con il singolo pozzetto hanno dimostrato la fattibilità del sistema anche per esperimenti in incubatori di colture cellulari per esperimenti di lunga durata. Il sistema è stato progettato per evitare comunicazioni e contaminazioni incrociate tra i pozzetti, pur mantenendo un formato high-throughput. Inoltre, per comprendere meglio la risposta cellulare a livello della singola cellula, ho anche lavorato su un sistema microfluidico automatizzato che sfrutta la strategia microfluidica delle gocce. In particolare, sono stati utilizzati due sensori di impedenza per rilevare le gocce e attivare le diverse operazioni del dispositivo per ottimizzare la sincronizzazione e l'unione delle gocce, passaggi cruciali per analisi multi-omiche o barcoding e che risultano ancora necessità non soddisfatte.
Development of automated microfluidic platforms for high-throughput drug screening and personalized medicine
Paola, De Stefano
2023
Abstract
Cancer is a leading cause of death worldwide. In particular, colorectal cancer is one of the most widespread. Despite the huge efforts made over the last few decades to find effective treatments, the failure rate is still high. A deeper understanding of cancer molecular biology is necessary to anticipate and elucidate drug-resistance mechanism to emerging molecular target agents. However, current technologies, such as high-throughput screening systems and standard cell cultures provide results poorly correlated with clinical outcomes because they are unable to mimic in vivo complexity in a high-throughput fashion. This PhD work has been developed within the project “Single-cell cancer evolution in the clinics”, co-funded by Cancer research UK and AIRC. The main goal is the development of an industrializable high-throughput microfluidic platform for the study of tumour progression and drug resistance mechanism. It should become a tool available in the clinics, to predict the effect of chemotherapy drugs on patient-derived cancer cells. The overall microfluidic device consists of two main layers. The top layer is meant for the culture of organoids embedded in a matrigel™ matrix, while the bottom one is responsible for the perfusion and the controlled delivery of drugs within a multi-well plate, where the matrigel™ drops are dipped. Specifically, this PhD thesis focused on the design and optimization of the microfluidic systems and their automation. To obtain an automatic and homogeneous distribution of matrigel™ containing patient-derived organoids, I have developed a custom-made volumetric extrusion bioprinter with specific dispensing systems. For droplets deposition, a custom-made cartridge was designed and tested, while, for large-scale constructs, I have implemented different types of needles to obtain standard or coaxial bioprinting. The results achieved show significant improvements over existing technologies as they can provide reliable results with one-step processes and with reduced reagents consumption. Moreover, I also worked on the design of the bottom layer. Specifically, I designed the wells, the collection system and the automation to provide both cell culture medium perfusion or tuneable drug administration profiles for a better evaluation of drug response. The results obtained with the single well demonstrated the feasibility of the system also for experiments in cell culture incubators for long time experiments. The system was designed to avoid cross-talks and cross-contaminations between the wells, while maintaining a high-throughput format. Furthermore, to better understand cellular response at single-cell layer, I have also worked on an automated microfluidic system exploiting droplet microfluidic strategy. In particular, two impedance sensors were used to detect droplets and triggering the different device operations to optimize droplets synchronization and merging, crucial steps for multi-omics analyses or barcoding and still an unmet need.File | Dimensione | Formato | |
---|---|---|---|
Tesi Paola De Stefano - vfinale - stampa.pdf
accesso solo da BNCF e BNCR
Dimensione
5.04 MB
Formato
Adobe PDF
|
5.04 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/207483
URN:NBN:IT:POLIMI-207483