This thesis investigates frequency selective surfaces (FSS) and their applications in electromagnetic absorption, filtering, and RCS reduction. It starts by looking at the design of electromagnetic absorbers (RAMs) using circuit analogue models and multilayer arrangements and connected FSS. The researchers achieved wideband absorption with reduced thickness by combining resistive FSS layers with optimised dielectric substrates, making these designs ideal for advanced stealth technologies and electromagnetic interference (EMI) mitigation. The study then focusses on FSS- based filters, demonstrating how equivalent-circuit models, such as transmission-line and lumped RLC networks, allow for the creation of spatial bandpass or bandstop metasurfaces. The use of resonant unit cells and interconnected designs allows these filters to achieve sharp frequency selectivity and broad bandwidth. The study demonstrates the efficacy of lightweight, thin-profile structures that provide robust wideband performance spanning frequency ranges from the L- to X- bands, even when using only dielectric substrates. A significant part of the thesis focusses on RCS reduction using FSS-based designs that reduce Radar Cross Section in monostatic and bistatic radar settings. Analytical approaches, proven by full-wave simulations, show how interconnected FSS absorbers can reduce scattering from huge panels or curved surfaces. Prototype measurements indicate a 10-15 dB reduction in RCS within the desired frequency regions. Finally, the thesis investigates the use of Inverse Synthetic Aperture Radar (ISAR) to study scattering behaviour on complicated objects. ISAR is utilised to identify high-scattering locations ("hotspots"), allowing for the targeted deployment of FSS-based absorbers for maximum RCS reduction. ISAR is also recognised for its function in high-resolution target imaging and categorisation, with the potential for machine learning techniques to improve efficiency and accuracy. This research increases our understanding and practical application of FSS technologies for absorption, filtering, and stealth applications, providing novel solutions to radar, telecommunications, and electromagnetic shielding difficulties
Questa tesi esamina le superfici selettive di frequenza (FSS) e le loro applicazioni nell’assorbimento elettromagnetico, nel filtraggio e nella riduzione della sezione radar (RCS). Nel primo capitolo si analizza la progettazione di assorbitori elettromagnetici (RAM) attraverso modelli a circuiti equivalenti e configurazioni multistrato, includendo FSS connesse. I risultati hanno portato ad un’ampia banda di assorbimento con uno spessore ridotto, combinando strati resistivi FSS con substrati dielettrici ottimizzati, rendendo questi progetti ideali per tecnologie stealth avanzate e mitigazione delle interferenze elettromagnetiche (EMI).Successivamente, lo studio si concentra sui filtri basati su FSS, dimostrando come modelli a circuiti equivalenti, quali reti a linee di trasmissione e RLC concentrati, consentano la creazione di metasuperfici a banda passante o banda soppressa. L'uso di elementi risonanti, ad alto Q factor e design interconnessi consente a questi filtri di ottenere una selettività di frequenza elevata e un'ampia larghezza di banda. Lo studio evidenzia l’efficacia di strutture leggere, capaci di garantire prestazioni robuste su bande di frequenza che vanno dalle L- band alle X-band, anche utilizzando solo substrati dielettrici. Una parte significativa di questa tesi è dedicata alla riduzione della sezione radar (RCS) attraverso i design di assorbitori elettromagnetici progettati, che mirano a minimizzare la sezione radar in scenari radar monostatici e bistatici. Approcci analitici, validati da simulazioni a onda completa, dimostrano come gli assorbitori FSS interconnessi possano ridurre la dispersione da grandi pannelli o superfici curve. Le misure sui prototipi indicano una riduzione dell’RCS di 10–15 dB nelle bande di frequenza desiderate. Infine, la tesi esplora l’uso del radar a sintesi d’apertura inversa (ISAR). L’ISAR viene utilizzato per identificare aree di scattering (“hotspot”), consentendo un’applicazione mirata degli assorbitori FSS per massimizzare la riduzione dell’RCS. Inoltre, l’ISAR è riconosciuto per il suo ruolo nell’imaging ad alta risoluzione e nella classificazione dei bersagli, con il potenziale di integrare tecniche di apprendimento automatico per migliorarne l’efficienza e la precisione. Questa ricerca approfondisce la comprensione e l’applicazione pratica delle tecnologie FSS per l’assorbimento, il filtraggio e le applicazioni stealth, offrendo soluzioni innovative alle sfide legate al radar, alle telecomunicazioni e alla schermatura elettromagnetica
ELECTROMAGNETIC METASURFACES FOR RADIATION CONTROL AND INTERFERENCES REDUCTION
VIOLI, VINCENZO
2025
Abstract
This thesis investigates frequency selective surfaces (FSS) and their applications in electromagnetic absorption, filtering, and RCS reduction. It starts by looking at the design of electromagnetic absorbers (RAMs) using circuit analogue models and multilayer arrangements and connected FSS. The researchers achieved wideband absorption with reduced thickness by combining resistive FSS layers with optimised dielectric substrates, making these designs ideal for advanced stealth technologies and electromagnetic interference (EMI) mitigation. The study then focusses on FSS- based filters, demonstrating how equivalent-circuit models, such as transmission-line and lumped RLC networks, allow for the creation of spatial bandpass or bandstop metasurfaces. The use of resonant unit cells and interconnected designs allows these filters to achieve sharp frequency selectivity and broad bandwidth. The study demonstrates the efficacy of lightweight, thin-profile structures that provide robust wideband performance spanning frequency ranges from the L- to X- bands, even when using only dielectric substrates. A significant part of the thesis focusses on RCS reduction using FSS-based designs that reduce Radar Cross Section in monostatic and bistatic radar settings. Analytical approaches, proven by full-wave simulations, show how interconnected FSS absorbers can reduce scattering from huge panels or curved surfaces. Prototype measurements indicate a 10-15 dB reduction in RCS within the desired frequency regions. Finally, the thesis investigates the use of Inverse Synthetic Aperture Radar (ISAR) to study scattering behaviour on complicated objects. ISAR is utilised to identify high-scattering locations ("hotspots"), allowing for the targeted deployment of FSS-based absorbers for maximum RCS reduction. ISAR is also recognised for its function in high-resolution target imaging and categorisation, with the potential for machine learning techniques to improve efficiency and accuracy. This research increases our understanding and practical application of FSS technologies for absorption, filtering, and stealth applications, providing novel solutions to radar, telecommunications, and electromagnetic shielding difficultiesFile | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Violi Vincenzo_XXXVII ciclo.pdf
embargo fino al 12/05/2026
Dimensione
8.68 MB
Formato
Adobe PDF
|
8.68 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/210490
URN:NBN:IT:UNIRC-210490