Climate change became an accepted hazard during the past decades, studies have proven and addressed it in the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Rising temperatures can affect human lives in various ways. This study focuses on the effects of heightened temperatures in the building sector, especially social housing, dedicated to low-income households which usually is known for its poor thermal characteristics. This thesis investigates the consequences of elevated internal temperatures, due to higher external temperatures on the thermal comfort and health of the occupants, especially during summer months. It answers the question about the influences of these climatic changes on the building energy consumption in the future, as building sector consumes a considerable amount of energy globally and has a significant effect on the GHG (greenhouse gas) emissions. Since in this research the main investigation is conducted on social housing, another goal is to find more affordable measures to ease the effects of climate change inside buildings to provide acceptable and low-risk thermal conditions for low-income occupants. To conduct this study, different weather files, Typical Meteorological Years (TMY) and Future Meteorological Years (FMY) for various Italian cities are generated using GCM-RCM which are bias-corrected with the Quantile Mapping method, to provide an insight about the future climatic conditions of these locations. In the next step, these files were used in numerical simulations performed with Design Builder and EnergyPlus, to simulate buildings energy consumption and thermal condition in the future. Moreover, different thermal comfort models were studied, and the most suitable biophysical model was chosen to obtain the hours in which the condition in the apartments leads to heat strain for the occupants and puts them under the risks of overheating. In addition to the archetype building that has been chosen to provide the opportunity to carry out simulations on the same building in different locations and with different weather files, a real building, a social housing building belongs to ATER Trieste, was modelled and calibrated with the temperature measured during the summer months of 2024. Consequently, the thermal condition and energy simulations were executed on this model. This study, based on the various climate models and in different locations, proves that in future, higher temperatures are expected to occur and with respect to the current condition, the number of cooling degree days will increase while the number of heating degree days will reduce. This can raise the risk of overheating in buildings with poor thermal structures and endanger their occupants. Although the need for heating will decrease, the cooling demand will increase in Italy, this growth will surpass the reduction in heating demand. As a result, the overall energy consumption will escalate in the future. Another finding of this thesis is the proof of the effectiveness of simple electric fans, the installation of window shades and harnessing the benefits of natural ventilation in easing consequences of climate change and the risk of heat strain inside buildings. In conclusion, this study emphasizes the importance of considering effects of climate change and rising temperatures on the health and thermal comfort of occupants and building energy consumption, especially in cooling seasons and for low-income households who cannot afford the air conditioning systems. Addressing climate change while designing the retrofit plans to provide a safe and comfortable interior condition and with the lower amount of energy consumption has utmost importance, since due to the climate change, the historical weather data and present requirements cannot effectively define the future climatic conditions which may result in hazardous thermal environments for the occupants and/or higher energy consumption in buildings.
Il cambiamento climatico è divenuto, negli ultimi decenni, un rischio accettato. Molti studi lo hanno dimostrato e, in particolare, la questione è stata affrontata nel sesto rapporto di valutazione dell’IPCC (Intergovernmental Panel of Climate Change, Gruppo intergovernativo sul cambiamento climatico). Il surriscaldamento globale, che rappresenta una delle conseguenze più importanti del cambiamento climatico, può influenzare la vita umana in molteplici modi. Il presente studio si concentra sugli effetti dell’innalzamento delle temperature nel settore edilizio, in particolare nell’edilizia sociale, relativa a famiglie a basso reddito e comunemente nota per le sue caratteristiche termiche scadenti. Questa tesi indaga le conseguenze delle elevate temperature interne agli edifici, risultanti dall’innalzamento delle temperature esterne, sul comfort termico e sulla salute degli occupanti, in particolar modo durante i mesi estivi. Inoltre, risponde alla domanda relativa agli effetti di questi cambiamenti climatici sul consumo energetico degli edifici nel futuro, dal momento che il settore edilizio consuma una quantità considerevole di energia a livello globale e ha un impatto significativo sulle emissioni di GHG. Considerato che in questa ricerca l’edilizia sociale è stata la principale investigata, un ulteriore obiettivo della presente tesi è quello di trovare misure più accessibili per attenuare gli effetti del cambiamento climatico all’interno degli edifici, nell’ottica di garantire condizioni termiche accettabili e a basso rischio per gli occupanti, specialmente per le famiglie a basso reddito. Per condurre questo studio, da un lato sono stati creati diversi file climatici per varie città italiane, sia TMYs (Typical Meteorological Years, Anni climatici tipo) che FMYs (Future Meteorological Years, Anni climatici futuri), nell’ottica di fornire una visione delle possibili condizioni climatiche future di queste località; tali file sono stati generati usando modelli di proiezione climatica GCM-RCM e sono stati corretti con il metodo QM (Quantile Mapping). Nella fase successiva, i file climatici sono stati implementati nelle simulazioni numeriche eseguite con i software Design Builder ed EnergyPlus, con lo scopo di simulare il consumo energetico e le condizioni termiche degli edifici nel futuro. Dall’altro lato, sono stati studiati diversi modelli di comfort termico ed è stato scelto il modello biofisico più adatto per ottenere le ore in cui all’interno degli appartamenti si verifica una condizione di stress termico per gli occupanti, esponendoli ai rischi legati al surriscaldamento. Oltre all’edificio archetipo, che è stato scelto per offrire l’opportunità di eseguire simulazioni sullo stesso edificio in diversi luoghi e con diversi file climatici, è stato modellato anche un edificio reale di proprietà dell’ATER di Trieste, calibrato con le misure di temperatura rilevate durante i mesi estivi del 2024. Le simulazioni delle condizioni termiche ed energetiche sono dunque state eseguite su questo modello con riferimento a Trieste. Questo studio, basato su diversi modelli climatici e riferito a diversi luoghi, dimostra che si prevedono temperature più elevate in futuro e che, rispetto alla condizione attuale, è atteso un aumento del numero di gradi giorno di raffrescamento e una diminuzione del numero di gradi giorno di riscaldamento. In primo luogo, ciò può aumentare il rischio di surriscaldamento negli edifici con strutture termiche scadenti, mettendone in pericolo gli occupanti. In secondo luogo, anche se nel futuro il bisogno di riscaldamento diminuirà, la domanda per il raffrescamento tenderà ad aumentare e questa crescita, in una zona come l’Italia, rischia di superare la riduzione della domanda per il riscaldamento, comportando un aumento del consumo energetico complessivo nel futuro. Un altro risultato degno di nota ...
Gli effetti del cambiamento climatico sul comfort e la salute delle persone all'interno degli edifici e sul consumo energetico
RAMEZANI, ATLAS
2025
Abstract
Climate change became an accepted hazard during the past decades, studies have proven and addressed it in the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Rising temperatures can affect human lives in various ways. This study focuses on the effects of heightened temperatures in the building sector, especially social housing, dedicated to low-income households which usually is known for its poor thermal characteristics. This thesis investigates the consequences of elevated internal temperatures, due to higher external temperatures on the thermal comfort and health of the occupants, especially during summer months. It answers the question about the influences of these climatic changes on the building energy consumption in the future, as building sector consumes a considerable amount of energy globally and has a significant effect on the GHG (greenhouse gas) emissions. Since in this research the main investigation is conducted on social housing, another goal is to find more affordable measures to ease the effects of climate change inside buildings to provide acceptable and low-risk thermal conditions for low-income occupants. To conduct this study, different weather files, Typical Meteorological Years (TMY) and Future Meteorological Years (FMY) for various Italian cities are generated using GCM-RCM which are bias-corrected with the Quantile Mapping method, to provide an insight about the future climatic conditions of these locations. In the next step, these files were used in numerical simulations performed with Design Builder and EnergyPlus, to simulate buildings energy consumption and thermal condition in the future. Moreover, different thermal comfort models were studied, and the most suitable biophysical model was chosen to obtain the hours in which the condition in the apartments leads to heat strain for the occupants and puts them under the risks of overheating. In addition to the archetype building that has been chosen to provide the opportunity to carry out simulations on the same building in different locations and with different weather files, a real building, a social housing building belongs to ATER Trieste, was modelled and calibrated with the temperature measured during the summer months of 2024. Consequently, the thermal condition and energy simulations were executed on this model. This study, based on the various climate models and in different locations, proves that in future, higher temperatures are expected to occur and with respect to the current condition, the number of cooling degree days will increase while the number of heating degree days will reduce. This can raise the risk of overheating in buildings with poor thermal structures and endanger their occupants. Although the need for heating will decrease, the cooling demand will increase in Italy, this growth will surpass the reduction in heating demand. As a result, the overall energy consumption will escalate in the future. Another finding of this thesis is the proof of the effectiveness of simple electric fans, the installation of window shades and harnessing the benefits of natural ventilation in easing consequences of climate change and the risk of heat strain inside buildings. In conclusion, this study emphasizes the importance of considering effects of climate change and rising temperatures on the health and thermal comfort of occupants and building energy consumption, especially in cooling seasons and for low-income households who cannot afford the air conditioning systems. Addressing climate change while designing the retrofit plans to provide a safe and comfortable interior condition and with the lower amount of energy consumption has utmost importance, since due to the climate change, the historical weather data and present requirements cannot effectively define the future climatic conditions which may result in hazardous thermal environments for the occupants and/or higher energy consumption in buildings.File | Dimensione | Formato | |
---|---|---|---|
PHD.pdf
accesso aperto
Dimensione
4.27 MB
Formato
Adobe PDF
|
4.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/212461
URN:NBN:IT:IUSSPAVIA-212461