Unreinforced masonry infills (URM) are widely used as enclosures or partitions in reinforced concrete or steel frame structures all over the world. Although considered non-structural elements and generally excluded in the gravity or lateral load design, URM infills are highly vulnerable to earthquake actions, often leading to major economic losses and posing significant life safety risks. Despite decades of research to understand and improve their seismic behaviour, the inadequacy of current code provisions for infill safety verifications is reflected by poor seismic performance of URM infills, even in newly constructed buildings. Specifically, the dynamic behaviour of infills, particularly the influence of in-plane actions on out-of-plane response, remains relatively unexplored. To address this gap, an extensive experimental campaign was conducted at EUCENTRE, Pavia, with the aim of characterising the seismic behaviour of an existing weak masonry infill typology commonly used in pre-seismic code era structures in Italy. Full-scale, single-story, single-bay, single-leaf infill specimens within a steel-concrete composite frame were subjected to in-plane pseudo static cyclic and out-of-plane dynamic shaking table tests. Unidirectional and sequential in-plane and out-of-plane tests were performed to evaluate their individual and interactive response. Two experimental phases were conducted to test infills with different boundary conditions. The first phase included five specimens: four fully adhered to the surrounding frame and one with only top and bottom connections. The second phase involved similar specimens, but with a poor connection to the frame at the top boundary represented by a thin gap between the frame and infill. The campaign also incorporated dynamic identification and material characterization tests. This study significantly contributes to the current experimental database with key findings on in-plane cyclic and out-of-plane dynamic behaviour of weak masonry infills. From in-plane tests, force and drift capacities, hysteretic energy dissipation, and drift limits defining performance levels based on damage were derived for infills fully connected and poorly connected at the top. Out-of-plane tests elucidated the influence of boundary conditions and prior in-plane damage on failure mechanisms, deformation patterns, acceleration profiles, and infill demand and capacity. Furthermore, finite element and distinct element numerical simulations using nonlinear static pushover analyses provided further insights into out-of-plane resistance mechanisms. Based on experimental and numerical findings, recommendations for the seismic assessment of URM infills were proposed.
I tamponamenti in muratura non armata (URM) sono ampiamente utilizzati come chiusure o divisori all'interno di strutture in cemento armato o acciaio in tutto il mondo. Sebbene siano considerati elementi non strutturali e generalmente esclusi dalla progettazione per carichi gravitazionali o laterali, i tamponamenti in muratura non armata sono altamente vulnerabili all'azione sismica, spesso causando ingenti perdite economiche e rappresentando un rischio significativo per la sicurezza delle persone. Nonostante decenni di ricerca per comprenderne e migliorarne il comportamento sismico, l’inadeguatezza delle attuali normative nella verifica di sicurezza dei tamponamenti è evidente nelle loro scarse prestazioni sismiche, anche in edifici di nuova costruzione. In particolare, il comportamento dinamico dei tamponamenti, e in particolare l'influenza delle azioni nel piano sulla risposta fuori piano, rimane relativamente poco esplorato. Per colmare questa lacuna, è stata condotta un'ampia campagna sperimentale presso EUCENTRE, a Pavia, con l'obiettivo di caratterizzare il comportamento sismico di una tipologia di tamponamento in muratura debole, comunemente utilizzata negli edifici italiani costruiti prima dell'entrata in vigore delle normative sismiche. Sono stati testati tamponamenti ad un solo paramento, a scala reale, all'interno di un telaio composito acciaio-calcestruzzo, sottoponendoli a prove cicliche pseudo-statiche nel piano e a prove dinamiche fuori piano su tavola vibrante. Sono stati eseguiti test unidirezionali e sequenziali nel piano e fuori piano per valutare la loro risposta individuale e interattiva. La campagna sperimentale si è articolata in due fasi, testando tamponamenti con diverse condizioni di vincolo. La prima fase ha coinvolto cinque provini: quattro completamente aderenti al telaio circostante e uno con connessioni limitate solo alla base e alla sommità. La seconda fase ha testato provini simili, ma con un collegamento debole al telaio nella parte superiore, rappresentato da un sottile gap tra il telaio e il tamponamento. Inoltre, la campagna ha incluso test di identificazione dinamica e caratterizzazione dei materiali. Questo studio fornisce un contributo significativo al database sperimentale esistente, evidenziando risultati chiave sul comportamento ciclico nel piano e dinamico fuori piano dei tamponamenti in muratura debole. Dalle prove nel piano sono stati ricavati parametri fondamentali come la forza e la capacità di spostamento, la dissipazione di energia isteretica e i limiti di drift che definiscono i livelli prestazionali in base ai danni, per tamponamenti completamente connessi e con connessioni deboli in sommità. Le prove fuori piano hanno chiarito l'influenza delle condizioni di vincolo e dei danni pregressi nel piano sui meccanismi di collasso, sugli schemi di deformazione, sui profili di accelerazione e sulla domanda e capacità del tamponamento. Inoltre, le simulazioni numeriche con elementi finiti ed elementi distinti, utilizzando analisi statiche non lineari (pushover), hanno fornito ulteriori approfondimenti sui meccanismi di resistenza fuori piano. Sulla base dei risultati sperimentali e numerici, sono state formulate raccomandazioni per la valutazione sismica dei tamponamenti in muratura non armata.
Comportamento sismico di tamponamenti esistenti in muratura non rinforzata realizzati con unità di argilla perforate orizzontalmente
KURUKULASURIYA, MAITHREE
2025
Abstract
Unreinforced masonry infills (URM) are widely used as enclosures or partitions in reinforced concrete or steel frame structures all over the world. Although considered non-structural elements and generally excluded in the gravity or lateral load design, URM infills are highly vulnerable to earthquake actions, often leading to major economic losses and posing significant life safety risks. Despite decades of research to understand and improve their seismic behaviour, the inadequacy of current code provisions for infill safety verifications is reflected by poor seismic performance of URM infills, even in newly constructed buildings. Specifically, the dynamic behaviour of infills, particularly the influence of in-plane actions on out-of-plane response, remains relatively unexplored. To address this gap, an extensive experimental campaign was conducted at EUCENTRE, Pavia, with the aim of characterising the seismic behaviour of an existing weak masonry infill typology commonly used in pre-seismic code era structures in Italy. Full-scale, single-story, single-bay, single-leaf infill specimens within a steel-concrete composite frame were subjected to in-plane pseudo static cyclic and out-of-plane dynamic shaking table tests. Unidirectional and sequential in-plane and out-of-plane tests were performed to evaluate their individual and interactive response. Two experimental phases were conducted to test infills with different boundary conditions. The first phase included five specimens: four fully adhered to the surrounding frame and one with only top and bottom connections. The second phase involved similar specimens, but with a poor connection to the frame at the top boundary represented by a thin gap between the frame and infill. The campaign also incorporated dynamic identification and material characterization tests. This study significantly contributes to the current experimental database with key findings on in-plane cyclic and out-of-plane dynamic behaviour of weak masonry infills. From in-plane tests, force and drift capacities, hysteretic energy dissipation, and drift limits defining performance levels based on damage were derived for infills fully connected and poorly connected at the top. Out-of-plane tests elucidated the influence of boundary conditions and prior in-plane damage on failure mechanisms, deformation patterns, acceleration profiles, and infill demand and capacity. Furthermore, finite element and distinct element numerical simulations using nonlinear static pushover analyses provided further insights into out-of-plane resistance mechanisms. Based on experimental and numerical findings, recommendations for the seismic assessment of URM infills were proposed.File | Dimensione | Formato | |
---|---|---|---|
UME_Thesis_Maithree Kurukulasuriya_revised.pdf
accesso aperto
Dimensione
27.81 MB
Formato
Adobe PDF
|
27.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/212743
URN:NBN:IT:IUSSPAVIA-212743