Earthquake sequences often pose significant and underestimated seismic risks. Past events show that cumulative damage during a sequence can greatly exceed damage from the mainshock alone, particularly for unreinforced masonry (URM) buildings. URMs are common but brittle, making them prone to damage accumulation and significant losses in seismic events. Risk assessment models, however, typically overlook these cumulative effects due to complexities in incorporating them into hazard analysis, fragility curves, and risk evaluation. This thesis develops a structured methodology to assess cumulative damage in URMs and integrate it into risk models. Using a component-based approach, it introduces a damage index (DI) based on Park and Ang’s Damage Index, incorporating drift and energy components. This DI, calibrated on experimental data, measures incremental damage and correlates it with hysteretic response, enabling accurate damage state (DS) tracking across sequences. The methodology accounts for effects like ground motion duration and performs well against experimental shake table data and real-world observations, such as the 2016 Central Italy earthquake sequence. To include cumulative damage in risk assessments, damage-dependent fragility curves were derived, linking event intensity and pre-existing damage levels. These curves show reductions in median capacity and increased dispersion with higher initial damage. Applied to URM buildings, these fragilities reveal significant impacts on damage predictions and annual loss estimates when accounting for cumulative damage, particularly during sequences. On a regional scale, this methodology was applied to the Central Italy 2016 sequence. Including damage accumulation improved the match between predicted and observed damage in some areas. In loss assessments, accounting for cumulative effects revealed substantial changes, although incorporating all events into hazard assessments remained the largest cause for increased risk. Practical issues in fragility model development were also addressed. One challenge lies in selecting hazard-consistent ground motions, as limited records often require scaling or substituting soil-based for rock-based motions. Tests showed that, using Conditional Spectrum techniques, these substitutions do not introduce significant biases. Finally, a new approach to Multiple Stripe Analysis (MSA) was devised, using interpolation and Bayesian updating to optimize analyses. This method reduces the number of simulations needed to generate robust fragility curves while maintaining accuracy for various systems, including SDOF and MDOF structures.
Le sequenze sismiche rappresentano spesso un rischio sismico significativo e sottovalutato. Eventi passati hanno mostrato che i danni cumulativi durante una sequenza possono superare di gran lunga quelli causati solo dal terremoto principale, specialmente negli edifici in muratura non armata (URM). Questi edifici sono comuni ma fragili, rendendoli vulnerabili all'accumulo di danni e a perdite significative durante gli eventi sismici. Tuttavia, i modelli di valutazione del rischio generalmente ignorano questi effetti cumulativi a causa delle difficoltà nell’integrarli nell’analisi della pericolosità, nelle curve di fragilità e nella valutazione del rischio. Questa tesi sviluppa una metodologia strutturata per valutare i danni cumulativi negli URM e integrarli nei modelli di rischio. Utilizzando un approccio basato sui componenti, introduce un indice di danno (DI) basato sul metodo di Park e Ang, che include componenti di drift ed energia. Questo DI, calibrato su dati sperimentali, misura i danni incrementali e li correla alla risposta isteretica, consentendo un monitoraggio accurato dello stato di danno (DS) durante le sequenze. La metodologia considera effetti come la durata del moto del suolo e mostra buoni risultati rispetto ai dati sperimentali e alle osservazioni reali, come nel caso della sequenza del terremoto del 2016 in Italia centrale. Per includere i danni cumulativi nelle valutazioni di rischio, sono state derivate curve di fragilità dipendenti dai danni, che collegano l'intensità dell'evento ai livelli di danno preesistenti. Queste curve evidenziano riduzioni della capacità media e un aumento della dispersione con livelli di danno iniziali più alti. Applicate agli URM, le curve mostrano impatti significativi sulle previsioni dei danni e sulle stime delle perdite annuali quando si tiene conto dei danni cumulativi, in particolare durante le sequenze. Su scala regionale, questa metodologia è stata applicata alla sequenza del 2016 in Italia centrale. Considerare l'accumulo di danni ha migliorato l’allineamento tra i danni previsti e quelli osservati in alcune aree. Nelle valutazioni delle perdite, l’inclusione degli effetti cumulativi ha rivelato cambiamenti sostanziali, anche se l’integrazione di tutti gli eventi nelle valutazioni di pericolosità è rimasta il principale fattore di aumento del rischio. Sono state affrontate anche questioni pratiche nello sviluppo dei modelli di fragilità. Una sfida riguarda la selezione di moti del suolo coerenti con la pericolosità, poiché i record limitati spesso richiedono la scalatura o la sostituzione di moti registrati su suolo con quelli su roccia. I test hanno dimostrato che, utilizzando tecniche dello Spettro Condizionato, queste sostituzioni non introducono bias significativi. Infine, è stato ideato un nuovo approccio per l'analisi Multiple Stripe (MSA), utilizzando interpolazione e aggiornamento bayesiano per ottimizzare le analisi. Questo metodo riduce il numero di simulazioni necessarie per generare curve di fragilità robuste, mantenendo l'accuratezza per vari sistemi, inclusi quelli SDOF e MDOF.
IMPLICAZIONI DI RISCHIO DEL DANNEGGIAMENTO PROGRESSIVO SUGLI EDIFICI IN MURATURA
GARCIA DE QUEVEDO IÑARRITU, PABLO ALFONSO
2025
Abstract
Earthquake sequences often pose significant and underestimated seismic risks. Past events show that cumulative damage during a sequence can greatly exceed damage from the mainshock alone, particularly for unreinforced masonry (URM) buildings. URMs are common but brittle, making them prone to damage accumulation and significant losses in seismic events. Risk assessment models, however, typically overlook these cumulative effects due to complexities in incorporating them into hazard analysis, fragility curves, and risk evaluation. This thesis develops a structured methodology to assess cumulative damage in URMs and integrate it into risk models. Using a component-based approach, it introduces a damage index (DI) based on Park and Ang’s Damage Index, incorporating drift and energy components. This DI, calibrated on experimental data, measures incremental damage and correlates it with hysteretic response, enabling accurate damage state (DS) tracking across sequences. The methodology accounts for effects like ground motion duration and performs well against experimental shake table data and real-world observations, such as the 2016 Central Italy earthquake sequence. To include cumulative damage in risk assessments, damage-dependent fragility curves were derived, linking event intensity and pre-existing damage levels. These curves show reductions in median capacity and increased dispersion with higher initial damage. Applied to URM buildings, these fragilities reveal significant impacts on damage predictions and annual loss estimates when accounting for cumulative damage, particularly during sequences. On a regional scale, this methodology was applied to the Central Italy 2016 sequence. Including damage accumulation improved the match between predicted and observed damage in some areas. In loss assessments, accounting for cumulative effects revealed substantial changes, although incorporating all events into hazard assessments remained the largest cause for increased risk. Practical issues in fragility model development were also addressed. One challenge lies in selecting hazard-consistent ground motions, as limited records often require scaling or substituting soil-based for rock-based motions. Tests showed that, using Conditional Spectrum techniques, these substitutions do not introduce significant biases. Finally, a new approach to Multiple Stripe Analysis (MSA) was devised, using interpolation and Bayesian updating to optimize analyses. This method reduces the number of simulations needed to generate robust fragility curves while maintaining accuracy for various systems, including SDOF and MDOF structures.File | Dimensione | Formato | |
---|---|---|---|
Thesis_finaldoc_REV_clean.pdf
accesso aperto
Dimensione
9.71 MB
Formato
Adobe PDF
|
9.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/212745
URN:NBN:IT:IUSSPAVIA-212745