The emergence of SARS-CoV-2 resulted in an unprecedented global pandemic, heavily impacting the economic and social aspects of our society. As a member of the Coronaviridae family, SARS-CoV-2 shared similarities with other highly pathogenic coronaviruses but possessed unique characteristics that contributed to its widespread transmission and pathogenicity. This study focused on the molecular characterization and infection kinetics of emerging SARS-CoV-2 variants, aiming to elucidate four key virological aspects: their entry mechanisms, replication dynamics, immune evasion strategies, and persistence on surfaces. These findings, along with results obtained using 'green' disinfectants, addressed critical knowledge gaps by investigating one of the less-characterized transmission mechanisms. To achieve our goals, we firstly isolated 11 different SARS-CoV-2 variants of concern from clinical samples. In vitro studies of viral replication and immune evasion were conducted using Calu-3 cell lines, in combination with pseudovirus systems, to gain a deeper understanding of the viral entry mechanism. Whole-genome sequencing allowed to characterize the genetic mutations among the variants, while quantitative RT-PCR assays provided detailed profiles of replication dynamics and host immune responses. To explore indirect transmission mechanisms, we set up an experimental workflow using environmental surfaces (copper, aluminum, and plastic), common materials found in both hospital and everyday environments. Additionally, we performed disinfection studies on these surfaces to assess the efficacy of environmentally friendly 'green' disinfectants, such as tea tree oil (TTO) and quercetin-based compounds. Our results revealed that mutations in the spike protein were directly associated with increased replication rates and more efficient entry mechanisms, alongside enhanced immune evasion through the inhibition of interferon responses. Together, these features contributed to increased infectivity, transmission, and pathogenicity. Notably, persistence studies also revealed that specific mutations, such as G446S, contributed to enhanced viral stability on surfaces, suggesting alternative transmission routes beyond direct person-to-person contact. The G446S mutation, present in the most recent variants, appeared to confer a selective advantage in terms of environmental persistence, thereby promoting indirect transmission dynamics. Furthermore, our investigation into 'green' disinfectants revealed that compounds such as TTO and quercetin achieved a viral load reduction exceeding 95% within minutes, outperforming conventional alcohol- and UV-based disinfection methods. These findings emphasized the distinct strategies SARS-CoV-2 employed to ensure survival and transmission, including its ability to adapt under selective pressure and evade host defenses. This work underscored the complex interplay between viral genetic evolution and its phenotypic manifestations, highlighting the importance of ongoing surveillance of emerging variants. Additionally, the efficacy of environmentally sustainable disinfectants presented a promising avenue for reducing transmission in both clinical and community settings.
Nel 2020 si è registrata una pandemia globale senza precedenti, con forte impatto su aspetti economici e sociali, dovuta all’insorgenza di un nuovo virus appartenente alla famiglia dei Coronaviridae: SARS-CoV-2. Questo nuovo virus pur presentando aspetti simili a SARS-CoV e MERS, virus della stessa famiglia, mostra tratti distintivi che ne hanno influenzato la trasmissione e la patogenicità. Considerando l’emergenza globale e la rapida ed incontrollata diffusione di SARS-CoV-2, questo studio si è concentrato sulla caratterizzazione molecolare e sulla cinetica di infezione delle varianti di SARS-CoV-2, con l’obiettivo di approfondire quattro aspetti virologici chiave: i meccanismi di ingresso, la dinamica di replicazione, le strategie di evasione immunitaria e la persistenza sulle superfici. I risultati ottenuti, insieme a quelli derivati dall’uso di disinfettanti naturali, hanno permesso di far luce su aspetti critici, indagando uno dei meccanismi di trasmissione meno caratterizzati. Per raggiungere questi obiettivi, inizialmente sono state isolate 11 varianti di SARS-CoV-2 da campioni clinici. Gli esperimenti in vitro sulla replicazione virale e sull’evasione immunitaria sono stati condotti utilizzando le linee cellulari immortalizzate delle Calu-3, in combinazione con pseudovirus, per analizzare più nel dettaglio il meccanismo di ingresso del virus. Il sequenziamento dell’intero genoma ha permesso di caratterizzare le mutazioni genetiche tra le varianti, mentre il saggio semiquantitativo di Real-Time PCR ha fornito profili dettagliati delle dinamiche di replicazione e delle risposte immunitarie dell’ospite. Per esplorare i meccanismi di trasmissione indiretta, abbiamo validato un setting sperimentale utilizzando superfici ambientali comuni, tra cui rame, alluminio e plastica, materiali frequentemente presenti sia in ambienti ospedalieri che nella vita quotidiana. Inoltre, sono stati condotti studi di disinfezione su queste superfici per valutare l’efficacia di disinfettanti naturali, come l’olio di tea tree (TTO) e composti a base di quercetina. I nostri risultati hanno rivelato che mutazioni nella proteina S erano direttamente associate a un aumento dei tassi di replicazione e a meccanismi di ingresso più efficienti, oltre che ad un potenziamento della risposta immunitaria con inibizione della cascata dell’interferone. Queste caratteristiche hanno complessivamente contribuito a una maggiore infettività, trasmissibilità e patogenicità del virus. In particolare, gli studi sulla persistenza hanno evidenziato che mutazioni specifiche, come G446S, conferiscono una maggiore stabilità ambientale, offrendo un vantaggio selettivo in termini di persistenza sulle superfici e favorendo così la trasmissione indiretta. Inoltre, la nostra indagine sui disinfettanti “eco-friendly” ha dimostrato che composti come il TTO e la quercetina sono in grado di sanificare le superfici fino al 95% di disinfezione in pochi minuti, superando l’efficacia delle tradizionali metodologie di disinfezione a base di alcol e UV. Questi risultati mettono evidenziano le strategie evolutive adottate da SARS-CoV-2 per garantire la propria sopravvivenza e trasmissione, inclusa la capacità di adattarsi alla pressione selettiva ed eludere le difese dell’ospite. Questo studio sottolinea la complessa interazione tra l’evoluzione genetica del virus e le sue manifestazioni fenotipiche, ribadendo l’importanza di un monitoraggio continuo delle varianti emergenti. Inoltre, l’efficacia dei disinfettanti ecologici rappresenta una prospettiva promettente per la riduzione della trasmissione mediante superfici contaminate.
CARATTERIZZAZIONE MOLECOLARE DELLE VARIANTI VIRALI DI SARS-COV-2, CINETICA DELL'INFEZIONE CELLULARE E VALUTAZIONE DELLA LORO INFETTIVITÀ DA FOMITI
SISTI, SOFIA
2025
Abstract
The emergence of SARS-CoV-2 resulted in an unprecedented global pandemic, heavily impacting the economic and social aspects of our society. As a member of the Coronaviridae family, SARS-CoV-2 shared similarities with other highly pathogenic coronaviruses but possessed unique characteristics that contributed to its widespread transmission and pathogenicity. This study focused on the molecular characterization and infection kinetics of emerging SARS-CoV-2 variants, aiming to elucidate four key virological aspects: their entry mechanisms, replication dynamics, immune evasion strategies, and persistence on surfaces. These findings, along with results obtained using 'green' disinfectants, addressed critical knowledge gaps by investigating one of the less-characterized transmission mechanisms. To achieve our goals, we firstly isolated 11 different SARS-CoV-2 variants of concern from clinical samples. In vitro studies of viral replication and immune evasion were conducted using Calu-3 cell lines, in combination with pseudovirus systems, to gain a deeper understanding of the viral entry mechanism. Whole-genome sequencing allowed to characterize the genetic mutations among the variants, while quantitative RT-PCR assays provided detailed profiles of replication dynamics and host immune responses. To explore indirect transmission mechanisms, we set up an experimental workflow using environmental surfaces (copper, aluminum, and plastic), common materials found in both hospital and everyday environments. Additionally, we performed disinfection studies on these surfaces to assess the efficacy of environmentally friendly 'green' disinfectants, such as tea tree oil (TTO) and quercetin-based compounds. Our results revealed that mutations in the spike protein were directly associated with increased replication rates and more efficient entry mechanisms, alongside enhanced immune evasion through the inhibition of interferon responses. Together, these features contributed to increased infectivity, transmission, and pathogenicity. Notably, persistence studies also revealed that specific mutations, such as G446S, contributed to enhanced viral stability on surfaces, suggesting alternative transmission routes beyond direct person-to-person contact. The G446S mutation, present in the most recent variants, appeared to confer a selective advantage in terms of environmental persistence, thereby promoting indirect transmission dynamics. Furthermore, our investigation into 'green' disinfectants revealed that compounds such as TTO and quercetin achieved a viral load reduction exceeding 95% within minutes, outperforming conventional alcohol- and UV-based disinfection methods. These findings emphasized the distinct strategies SARS-CoV-2 employed to ensure survival and transmission, including its ability to adapt under selective pressure and evade host defenses. This work underscored the complex interplay between viral genetic evolution and its phenotypic manifestations, highlighting the importance of ongoing surveillance of emerging variants. Additionally, the efficacy of environmentally sustainable disinfectants presented a promising avenue for reducing transmission in both clinical and community settings.File | Dimensione | Formato | |
---|---|---|---|
Tesi_SISTI_Finale.pdf
embargo fino al 06/11/2025
Dimensione
10.21 MB
Formato
Adobe PDF
|
10.21 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/213105
URN:NBN:IT:UNISR-213105