The urgency of increasing the environmental sustainability of the human activities, to limit the irreversible changes we see daily in the climate and nature, has become one of the biggest problems worldwide. Amongst the new methods proposed by the scientific community, Oxygen transport Membranes (OTMs) have gained a lot of attention, since they can be employed in different applications, potentially bringing a significant contribution for the decarbonization of the energy system. OTMs allow oxygen separation from gas mixtures like or ambient air, and therefore they can be used to produce pure oxygen for oxy-fired industrial processes. Moreover, recent studies have applied OTMs in Catalytic Membrane Reactors (CMRs), which exploit the properties of oxygen transport to perform processes of chemical conversion. CMRs can potentially be employed to produce several chemical commodities and energy vectors, including hydrogen from and earth-abundant and carbon-free source likewater. To work, OTMs need to conduct both electrons and ions; therefore, they are mainly made of Mixed Electron and Ion Conductors (MIEC). Although OTMs have promising applications, they work at high temperatures and in highly reducing environments. The most significant limit for the diffusion of OTMs in real processes is that they exhibit either low stability in operating conditions, or low permeability. The challenge is then to design new OTMs materials that exhibit a good balance between stability and permeability. The objective of this PhD project was to identify, synthesize, and characterize innovative MIEC materials with promising properties for application in OTM operating under challenging conditions, like reducing and CO2-containing atmospheres. , The activities were focused on MIEC oxides belonging to the class of SrTi1-xFex-O3- perovskites, which had recently attracted attention thanks to its higher chemical stability with respect to the most studied MIEC materials. In particular, it was investigated the effect of A-site substitution on the perovskite SrTi0,8Fe0,2O3- (STF82). . Therefore, initially, it was chosen to substitute strontium with calcium, which might increase the material tolerance to CO2 but, having a smaller ionic radius, potentially have a negative impact on the oxygen permeation performance. Two different Ca fractions were chosen to preliminary investigate a possible range of substitutions, 10% and 40%, and so Sr0,9Ca0,1Ti0,8Fe0,2O3- (SCTF9182) and Sr0,6Ca0,4Ti0,8Fe0,2O3- (SCTF6482) were prepared through solid-state reaction. The stability of these powders against CO2 was studied with Thermogravimetric Analysis (TGA), and permeability tests were carried out on sintered dense membranes in the range of 600°-1000°C under partial pressure gradient with air and argon as feed and sweep gases. In addition, long-term permeation tests on SCTF9182 membranes were performed in CO2 atmosphere. It was observed that the stability of the perovskite lattice in CO2-containing environment was improved by Ca substitution, with mitigate the undesired formation of carbonates. On the contrary, the permeability was not reduced by Ca introduction, which makes this substitution promising for the development of new materials for OTMs. Moreover, SCTF9182 membrane showed constant oxygen separation flux and no phase degradation after permeating for 340 h at 900 °C when swept with He and for 170 h at 900 °C when swept with a gaseous stream containing 40% CO2. The identified materials were employed to prepare dual-phase membranes composed by a mixture of the well-known ionic conductor gadolinium doped ceria (CGO) and the perovskites previously synthesised STF82, SCTF9182 and SCTF6482. Appropriate sintering conditions to obtain dense gas-tight membranes and avoid any phase interaction between CGO and STF/CSFT were identified. Permeability tests were carried out on both dense membranes and dense membranes with an activation layer of LSCF on the surface, which overcomes the limitations related to surface exchange reactions. Dual-phase membranes did not improve the permeability compared to single-phase membranes, and by adding the activated layer, all membranes exhibited the same permeance, highlighting that the limiting factor, in this case, is the ionic conduction through CGO phase. Finally, the substitution of barium was investigated. In this case, it has a higher ionic radius than strontium, which could facilitate the formation of oxygen vacancies and improve the permeation of oxygen ions. Barium was substituted in the same percentages as calcium, and so the perovskites Sr0,9Ba0,1Ti0,8Fe0,2O3-(SBTF9182) and Sr0,6Ba0,4Ti0,8Fe0,2O3- (SBTF6482) were synthesised by solid state reaction and the sintering treatment was optimized for both compositions, in order to avoid cracks formation and obtain gas-tight bulk membranes. Permeability tests revealed comparable permeance for the three perovskites STF82, SBTF9182 and SBTF6482 for in the temperature range 750 – 1000 °C. Like in the case of Ca, the substitution of Sr with Ba at fractions up to 40 % seems to have only a minor effect on the oxygen permeability performance.
L’urgenza di aumentare la sostenibilità ambientale nelle attività industriali per limitare i cambiamenti irreversibili, a cui assistiamo quotidianamente nel clima e nella natura, è diventata una tra le maggiori sfide a livello mondiale. Tra i metodi green per la produzione di energia proposti dalla comunità scientifica hanno guadagnato molta attenzione le membrane per il trasporto dell’ossigeno (OTM), poiché possono essere impiegate in diversi ambiti, apportando un contributo significativo alla decarbonizzazione del sistema energetico. Le OTM permettono di separare l’ossigeno da miscele di gas, come l’aria, e possono quindi essere utilizzate per produrre ossigeno puro per i processi industriali di ossidazione. Inoltre, studi recenti hanno applicato le OTM in reattori catalitici a membrana (CMR), che sfruttano le proprietà del trasporto di ossigeno per eseguire processi di conversione chimica. I CMR possono potenzialmente essere impiegati per produrre diversi prodotti chimici e vettori energetici, tra cui l’idrogeno da una fonte abbondante e priva di carbonio come l’acqua. Per funzionare, gli OTM devono condurre sia elettroni che ioni; pertanto, sono costituiti principalmente da conduttori misti di elettroni e ioni (MIEC). Sebbene gli OTM abbiano applicazioni promettenti, funzionano a temperature elevate e in ambienti altamente riducenti. Il limite più significativo per l’applicazione degli OTM nei processi reali è che presentano una bassa stabilità nelle condizioni operative o una bassa permeabilità. La sfida è quindi quella di progettare nuovi materiali OTM che presentino un buon equilibrio tra stabilità e permeabilità. L’obiettivo di questo progetto di dottorato è stato quello di identificare, sintetizzare e caratterizzare materiali MIEC innovativi con proprietà promettenti per l’applicazione in OTM operanti in condizioni difficili, come atmosfere riducenti e contenenti CO2 . Le attività si sono concentrate sugli ossidi MIEC appartenenti alla classe delle perovskiti SrTi1-xFexO3- , che ha recentemente attirato l’attenzione grazie alla sua maggiore stabilità chimica rispetto ai materiali MIEC più studiati. In particolare, è stato studiato l’effetto della sostituzione del sito A sulla perovskite SrTi0,8Fe0,2O3- (STF82). Pertanto, inizialmente si è scelto di sostituire lo stronzio con il calcio, che potrebbe aumentare la tolleranza del materiale alla CO2 ma, avendo un raggio ionico più piccolo, potrebbe avere un impatto negativo sulle prestazioni di permeazione dell’ossigeno. Per studiare in via preliminare una possibile gamma di sostituzioni, sono state scelte due diverse frazioni di Ca, il 10% e il 40%, e sono state così preparate per reazione allo stato solido Sr0,9Ca0,1Ti0,8Fe0,2O3- (SCTF9182) e Sr0,6Ca0,4Ti0,8Fe0,2O3- (SCTF6482). La stabilità di queste polveri nei confronti della CO2 è stata studiata con l’analisi termogravimetrica (TGA) e sono stati eseguiti test di permeabilità su membrane dense sinterizzate nell’intervallo 600°-1000°C in gradiente di pressione parziale con aria e argon come gas di alimentazione e sweep. Inoltre, sono stati eseguiti test di permeazione a lungo termine sulle membrane SCTF9182 in atmosfera di CO2. È stato osservato che la stabilità del reticolo di perovskite in ambiente contenente CO2 è stata migliorata dalla sostituzione del Ca, mitigando la formazione indesiderata di carbonati. Al contrario, la permeabilità non è stata ridotta dall’introduzione del Ca, il che rende questa sostituzione promettente per lo sviluppo di nuovi materiali per gli OTM. Inoltre, la membrana SCTF9182 ha mostrato un flusso costante di separazione dell’ossigeno e nessuna degradazione di fase dopo aver permeato per 340 ore a 900 °C con elio come gas di sweep e per 170 ore a 900 °C con un flusso gassoso di sweep contenente il 40% di CO2. I materiali identificati sono stati impiegati per preparare membrane dual-phase composte da una miscela del noto conduttore ionico ossido di cerio dopato con gadolinio (CGO) e delle perovskiti precedentemente sintetizzate STF82, SCTF9182 e SCTF6482. Sono state identificate le condizioni di sinterizzazione più adatte per ottenere membrane dense a tenuta di gas ed evitare qualsiasi interazione di fase tra CGO e STF/CSFT. Sono stati eseguiti test di permeabilità sia su membrane dense che su membrane dense con uno strato di attivazione di LSCF sulla superficie, che supera le limitazioni legate alle reazioni di scambio superficiale. Le membrane dual-phase non hanno migliorato la permeabilità rispetto alle membrane single-phase e, aggiungendo lo strato di attivazione, tutte le membrane hanno mostrato la stessa permeabilità, evidenziando che il fattore limitante, in questo caso, è la conduzione ionica attraverso la fase CGO. Infine, è stata studiata la sostituzione del bario. In questo caso, il bario ha un raggio ionico più alto dello stronzio, che potrebbe facilitare la formazione di vacancies di ossigeno e migliorare la permeazione degli ioni di ossigeno. Il bario è stato sostituito nelle stesse percentuali del calcio, quindi le perovskiti Sr0,9Ba0,1Ti0,8Fe0,2O3- (SBTF9182) e Sr0,6Ba0,4Ti0,8Fe0,2O3- (SBTF6482) sono state sintetizzate per reazione allo stato solido e il trattamento di sinterizzazione è stato ottimizzato per entrambe le composizioni, al fine di evitare la formazione di cricche e ottenere membrane bulk a tenuta di gas. I test di permeabilità hanno rivelato una permeabilità comparabile per le tre perovskiti STF82, SBTF9182 e SBTF6482 per l’intervallo di temperatura 750-1000 °C. Come nel caso del Ca, la sostituzione di Sr con Ba in frazioni fino al 40% sembra avere solo un effetto minore sulle prestazioni di permeabilità all’ossigeno.
Development of innovative Oxygen Transport Membranes materials for application in Catalytic Membrane Reactors.
Veronica, Nigroni
2025
Abstract
The urgency of increasing the environmental sustainability of the human activities, to limit the irreversible changes we see daily in the climate and nature, has become one of the biggest problems worldwide. Amongst the new methods proposed by the scientific community, Oxygen transport Membranes (OTMs) have gained a lot of attention, since they can be employed in different applications, potentially bringing a significant contribution for the decarbonization of the energy system. OTMs allow oxygen separation from gas mixtures like or ambient air, and therefore they can be used to produce pure oxygen for oxy-fired industrial processes. Moreover, recent studies have applied OTMs in Catalytic Membrane Reactors (CMRs), which exploit the properties of oxygen transport to perform processes of chemical conversion. CMRs can potentially be employed to produce several chemical commodities and energy vectors, including hydrogen from and earth-abundant and carbon-free source likewater. To work, OTMs need to conduct both electrons and ions; therefore, they are mainly made of Mixed Electron and Ion Conductors (MIEC). Although OTMs have promising applications, they work at high temperatures and in highly reducing environments. The most significant limit for the diffusion of OTMs in real processes is that they exhibit either low stability in operating conditions, or low permeability. The challenge is then to design new OTMs materials that exhibit a good balance between stability and permeability. The objective of this PhD project was to identify, synthesize, and characterize innovative MIEC materials with promising properties for application in OTM operating under challenging conditions, like reducing and CO2-containing atmospheres. , The activities were focused on MIEC oxides belonging to the class of SrTi1-xFex-O3- perovskites, which had recently attracted attention thanks to its higher chemical stability with respect to the most studied MIEC materials. In particular, it was investigated the effect of A-site substitution on the perovskite SrTi0,8Fe0,2O3- (STF82). . Therefore, initially, it was chosen to substitute strontium with calcium, which might increase the material tolerance to CO2 but, having a smaller ionic radius, potentially have a negative impact on the oxygen permeation performance. Two different Ca fractions were chosen to preliminary investigate a possible range of substitutions, 10% and 40%, and so Sr0,9Ca0,1Ti0,8Fe0,2O3- (SCTF9182) and Sr0,6Ca0,4Ti0,8Fe0,2O3- (SCTF6482) were prepared through solid-state reaction. The stability of these powders against CO2 was studied with Thermogravimetric Analysis (TGA), and permeability tests were carried out on sintered dense membranes in the range of 600°-1000°C under partial pressure gradient with air and argon as feed and sweep gases. In addition, long-term permeation tests on SCTF9182 membranes were performed in CO2 atmosphere. It was observed that the stability of the perovskite lattice in CO2-containing environment was improved by Ca substitution, with mitigate the undesired formation of carbonates. On the contrary, the permeability was not reduced by Ca introduction, which makes this substitution promising for the development of new materials for OTMs. Moreover, SCTF9182 membrane showed constant oxygen separation flux and no phase degradation after permeating for 340 h at 900 °C when swept with He and for 170 h at 900 °C when swept with a gaseous stream containing 40% CO2. The identified materials were employed to prepare dual-phase membranes composed by a mixture of the well-known ionic conductor gadolinium doped ceria (CGO) and the perovskites previously synthesised STF82, SCTF9182 and SCTF6482. Appropriate sintering conditions to obtain dense gas-tight membranes and avoid any phase interaction between CGO and STF/CSFT were identified. Permeability tests were carried out on both dense membranes and dense membranes with an activation layer of LSCF on the surface, which overcomes the limitations related to surface exchange reactions. Dual-phase membranes did not improve the permeability compared to single-phase membranes, and by adding the activated layer, all membranes exhibited the same permeance, highlighting that the limiting factor, in this case, is the ionic conduction through CGO phase. Finally, the substitution of barium was investigated. In this case, it has a higher ionic radius than strontium, which could facilitate the formation of oxygen vacancies and improve the permeation of oxygen ions. Barium was substituted in the same percentages as calcium, and so the perovskites Sr0,9Ba0,1Ti0,8Fe0,2O3-(SBTF9182) and Sr0,6Ba0,4Ti0,8Fe0,2O3- (SBTF6482) were synthesised by solid state reaction and the sintering treatment was optimized for both compositions, in order to avoid cracks formation and obtain gas-tight bulk membranes. Permeability tests revealed comparable permeance for the three perovskites STF82, SBTF9182 and SBTF6482 for in the temperature range 750 – 1000 °C. Like in the case of Ca, the substitution of Sr with Ba at fractions up to 40 % seems to have only a minor effect on the oxygen permeability performance.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato Nigroni Veronica.pdf
embargo fino al 01/06/2027
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/213242
URN:NBN:IT:UNIPR-213242